Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/liblcms/cmsmtrx.c
41152 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
// This file is available under and governed by the GNU General Public
26
// License version 2 only, as published by the Free Software Foundation.
27
// However, the following notice accompanied the original version of this
28
// file:
29
//
30
//---------------------------------------------------------------------------------
31
//
32
// Little Color Management System
33
// Copyright (c) 1998-2020 Marti Maria Saguer
34
//
35
// Permission is hereby granted, free of charge, to any person obtaining
36
// a copy of this software and associated documentation files (the "Software"),
37
// to deal in the Software without restriction, including without limitation
38
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39
// and/or sell copies of the Software, and to permit persons to whom the Software
40
// is furnished to do so, subject to the following conditions:
41
//
42
// The above copyright notice and this permission notice shall be included in
43
// all copies or substantial portions of the Software.
44
//
45
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52
//
53
//---------------------------------------------------------------------------------
54
//
55
56
#include "lcms2_internal.h"
57
58
59
#define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;}
60
61
62
// Initiate a vector
63
void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z)
64
{
65
r -> n[VX] = x;
66
r -> n[VY] = y;
67
r -> n[VZ] = z;
68
}
69
70
// Vector subtraction
71
void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b)
72
{
73
r -> n[VX] = a -> n[VX] - b -> n[VX];
74
r -> n[VY] = a -> n[VY] - b -> n[VY];
75
r -> n[VZ] = a -> n[VZ] - b -> n[VZ];
76
}
77
78
// Vector cross product
79
void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v)
80
{
81
r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ];
82
r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX];
83
r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY];
84
}
85
86
// Vector dot product
87
cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v)
88
{
89
return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ];
90
}
91
92
// Euclidean length
93
cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a)
94
{
95
return sqrt(a ->n[VX] * a ->n[VX] +
96
a ->n[VY] * a ->n[VY] +
97
a ->n[VZ] * a ->n[VZ]);
98
}
99
100
// Euclidean distance
101
cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b)
102
{
103
cmsFloat64Number d1 = a ->n[VX] - b ->n[VX];
104
cmsFloat64Number d2 = a ->n[VY] - b ->n[VY];
105
cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ];
106
107
return sqrt(d1*d1 + d2*d2 + d3*d3);
108
}
109
110
111
112
// 3x3 Identity
113
void CMSEXPORT _cmsMAT3identity(cmsMAT3* a)
114
{
115
_cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0);
116
_cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0);
117
_cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0);
118
}
119
120
static
121
cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b)
122
{
123
return fabs(b - a) < (1.0 / 65535.0);
124
}
125
126
127
cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a)
128
{
129
cmsMAT3 Identity;
130
int i, j;
131
132
_cmsMAT3identity(&Identity);
133
134
for (i=0; i < 3; i++)
135
for (j=0; j < 3; j++)
136
if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE;
137
138
return TRUE;
139
}
140
141
142
// Multiply two matrices
143
void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b)
144
{
145
#define ROWCOL(i, j) \
146
a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j]
147
148
_cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2));
149
_cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2));
150
_cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2));
151
152
#undef ROWCOL //(i, j)
153
}
154
155
156
157
// Inverse of a matrix b = a^(-1)
158
cmsBool CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b)
159
{
160
cmsFloat64Number det, c0, c1, c2;
161
162
c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1];
163
c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0];
164
c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0];
165
166
det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2;
167
168
if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert
169
170
b -> v[0].n[0] = c0/det;
171
b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det;
172
b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det;
173
b -> v[1].n[0] = c1/det;
174
b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det;
175
b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det;
176
b -> v[2].n[0] = c2/det;
177
b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det;
178
b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det;
179
180
return TRUE;
181
}
182
183
184
// Solve a system in the form Ax = b
185
cmsBool CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b)
186
{
187
cmsMAT3 m, a_1;
188
189
memmove(&m, a, sizeof(cmsMAT3));
190
191
if (!_cmsMAT3inverse(&m, &a_1)) return FALSE; // Singular matrix
192
193
_cmsMAT3eval(x, &a_1, b);
194
return TRUE;
195
}
196
197
// Evaluate a vector across a matrix
198
void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v)
199
{
200
r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ];
201
r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ];
202
r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ];
203
}
204
205
206
207