Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/liblcms/cmsopt.c
41149 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
// This file is available under and governed by the GNU General Public
26
// License version 2 only, as published by the Free Software Foundation.
27
// However, the following notice accompanied the original version of this
28
// file:
29
//
30
//---------------------------------------------------------------------------------
31
//
32
// Little Color Management System
33
// Copyright (c) 1998-2020 Marti Maria Saguer
34
//
35
// Permission is hereby granted, free of charge, to any person obtaining
36
// a copy of this software and associated documentation files (the "Software"),
37
// to deal in the Software without restriction, including without limitation
38
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39
// and/or sell copies of the Software, and to permit persons to whom the Software
40
// is furnished to do so, subject to the following conditions:
41
//
42
// The above copyright notice and this permission notice shall be included in
43
// all copies or substantial portions of the Software.
44
//
45
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52
//
53
//---------------------------------------------------------------------------------
54
//
55
56
#include "lcms2_internal.h"
57
58
59
//----------------------------------------------------------------------------------
60
61
// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
62
typedef struct {
63
64
cmsContext ContextID;
65
66
const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
67
68
cmsUInt16Number rx[256], ry[256], rz[256];
69
cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
70
71
72
} Prelin8Data;
73
74
75
// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
76
typedef struct {
77
78
cmsContext ContextID;
79
80
// Number of channels
81
cmsUInt32Number nInputs;
82
cmsUInt32Number nOutputs;
83
84
_cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
85
cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
86
87
_cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
88
const cmsInterpParams* CLUTparams; // (not-owned pointer)
89
90
91
_cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
92
cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
93
94
95
} Prelin16Data;
96
97
98
// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
99
100
typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
101
102
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
103
104
typedef struct {
105
106
cmsContext ContextID;
107
108
cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
109
cmsS1Fixed14Number Shaper1G[256];
110
cmsS1Fixed14Number Shaper1B[256];
111
112
cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
113
cmsS1Fixed14Number Off[3];
114
115
cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
116
cmsUInt16Number Shaper2G[16385];
117
cmsUInt16Number Shaper2B[16385];
118
119
} MatShaper8Data;
120
121
// Curves, optimization is shared between 8 and 16 bits
122
typedef struct {
123
124
cmsContext ContextID;
125
126
cmsUInt32Number nCurves; // Number of curves
127
cmsUInt32Number nElements; // Elements in curves
128
cmsUInt16Number** Curves; // Points to a dynamically allocated array
129
130
} Curves16Data;
131
132
133
// Simple optimizations ----------------------------------------------------------------------------------------------------------
134
135
136
// Remove an element in linked chain
137
static
138
void _RemoveElement(cmsStage** head)
139
{
140
cmsStage* mpe = *head;
141
cmsStage* next = mpe ->Next;
142
*head = next;
143
cmsStageFree(mpe);
144
}
145
146
// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
147
static
148
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
149
{
150
cmsStage** pt = &Lut ->Elements;
151
cmsBool AnyOpt = FALSE;
152
153
while (*pt != NULL) {
154
155
if ((*pt) ->Implements == UnaryOp) {
156
_RemoveElement(pt);
157
AnyOpt = TRUE;
158
}
159
else
160
pt = &((*pt) -> Next);
161
}
162
163
return AnyOpt;
164
}
165
166
// Same, but only if two adjacent elements are found
167
static
168
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
169
{
170
cmsStage** pt1;
171
cmsStage** pt2;
172
cmsBool AnyOpt = FALSE;
173
174
pt1 = &Lut ->Elements;
175
if (*pt1 == NULL) return AnyOpt;
176
177
while (*pt1 != NULL) {
178
179
pt2 = &((*pt1) -> Next);
180
if (*pt2 == NULL) return AnyOpt;
181
182
if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
183
_RemoveElement(pt2);
184
_RemoveElement(pt1);
185
AnyOpt = TRUE;
186
}
187
else
188
pt1 = &((*pt1) -> Next);
189
}
190
191
return AnyOpt;
192
}
193
194
195
static
196
cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
197
{
198
return fabs(b - a) < 0.00001f;
199
}
200
201
static
202
cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
203
{
204
cmsMAT3 Identity;
205
int i, j;
206
207
_cmsMAT3identity(&Identity);
208
209
for (i = 0; i < 3; i++)
210
for (j = 0; j < 3; j++)
211
if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
212
213
return TRUE;
214
}
215
// if two adjacent matrices are found, multiply them.
216
static
217
cmsBool _MultiplyMatrix(cmsPipeline* Lut)
218
{
219
cmsStage** pt1;
220
cmsStage** pt2;
221
cmsStage* chain;
222
cmsBool AnyOpt = FALSE;
223
224
pt1 = &Lut->Elements;
225
if (*pt1 == NULL) return AnyOpt;
226
227
while (*pt1 != NULL) {
228
229
pt2 = &((*pt1)->Next);
230
if (*pt2 == NULL) return AnyOpt;
231
232
if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
233
234
// Get both matrices
235
_cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
236
_cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
237
cmsMAT3 res;
238
239
// Input offset and output offset should be zero to use this optimization
240
if (m1->Offset != NULL || m2 ->Offset != NULL ||
241
cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
242
cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
243
return FALSE;
244
245
// Multiply both matrices to get the result
246
_cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
247
248
// Get the next in chain after the matrices
249
chain = (*pt2)->Next;
250
251
// Remove both matrices
252
_RemoveElement(pt2);
253
_RemoveElement(pt1);
254
255
// Now what if the result is a plain identity?
256
if (!isFloatMatrixIdentity(&res)) {
257
258
// We can not get rid of full matrix
259
cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
260
if (Multmat == NULL) return FALSE; // Should never happen
261
262
// Recover the chain
263
Multmat->Next = chain;
264
*pt1 = Multmat;
265
}
266
267
AnyOpt = TRUE;
268
}
269
else
270
pt1 = &((*pt1)->Next);
271
}
272
273
return AnyOpt;
274
}
275
276
277
// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
278
// by a v4 to v2 and vice-versa. The elements are then discarded.
279
static
280
cmsBool PreOptimize(cmsPipeline* Lut)
281
{
282
cmsBool AnyOpt = FALSE, Opt;
283
284
do {
285
286
Opt = FALSE;
287
288
// Remove all identities
289
Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
290
291
// Remove XYZ2Lab followed by Lab2XYZ
292
Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
293
294
// Remove Lab2XYZ followed by XYZ2Lab
295
Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
296
297
// Remove V4 to V2 followed by V2 to V4
298
Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
299
300
// Remove V2 to V4 followed by V4 to V2
301
Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
302
303
// Remove float pcs Lab conversions
304
Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
305
306
// Remove float pcs Lab conversions
307
Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
308
309
// Simplify matrix.
310
Opt |= _MultiplyMatrix(Lut);
311
312
if (Opt) AnyOpt = TRUE;
313
314
} while (Opt);
315
316
return AnyOpt;
317
}
318
319
static
320
void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
321
CMSREGISTER cmsUInt16Number Output[],
322
CMSREGISTER const struct _cms_interp_struc* p)
323
{
324
Output[0] = Input[0];
325
326
cmsUNUSED_PARAMETER(p);
327
}
328
329
static
330
void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
331
CMSREGISTER cmsUInt16Number Output[],
332
CMSREGISTER const void* D)
333
{
334
Prelin16Data* p16 = (Prelin16Data*) D;
335
cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
336
cmsUInt16Number StageDEF[cmsMAXCHANNELS];
337
cmsUInt32Number i;
338
339
for (i=0; i < p16 ->nInputs; i++) {
340
341
p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
342
}
343
344
p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
345
346
for (i=0; i < p16 ->nOutputs; i++) {
347
348
p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
349
}
350
}
351
352
353
static
354
void PrelinOpt16free(cmsContext ContextID, void* ptr)
355
{
356
Prelin16Data* p16 = (Prelin16Data*) ptr;
357
358
_cmsFree(ContextID, p16 ->EvalCurveOut16);
359
_cmsFree(ContextID, p16 ->ParamsCurveOut16);
360
361
_cmsFree(ContextID, p16);
362
}
363
364
static
365
void* Prelin16dup(cmsContext ContextID, const void* ptr)
366
{
367
Prelin16Data* p16 = (Prelin16Data*) ptr;
368
Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
369
370
if (Duped == NULL) return NULL;
371
372
Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
373
Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
374
375
return Duped;
376
}
377
378
379
static
380
Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
381
const cmsInterpParams* ColorMap,
382
cmsUInt32Number nInputs, cmsToneCurve** In,
383
cmsUInt32Number nOutputs, cmsToneCurve** Out )
384
{
385
cmsUInt32Number i;
386
Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
387
if (p16 == NULL) return NULL;
388
389
p16 ->nInputs = nInputs;
390
p16 ->nOutputs = nOutputs;
391
392
393
for (i=0; i < nInputs; i++) {
394
395
if (In == NULL) {
396
p16 -> ParamsCurveIn16[i] = NULL;
397
p16 -> EvalCurveIn16[i] = Eval16nop1D;
398
399
}
400
else {
401
p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
402
p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
403
}
404
}
405
406
p16 ->CLUTparams = ColorMap;
407
p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
408
409
410
p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
411
if (p16->EvalCurveOut16 == NULL)
412
{
413
_cmsFree(ContextID, p16);
414
return NULL;
415
}
416
417
p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
418
if (p16->ParamsCurveOut16 == NULL)
419
{
420
421
_cmsFree(ContextID, p16->EvalCurveOut16);
422
_cmsFree(ContextID, p16);
423
return NULL;
424
}
425
426
for (i=0; i < nOutputs; i++) {
427
428
if (Out == NULL) {
429
p16 ->ParamsCurveOut16[i] = NULL;
430
p16 -> EvalCurveOut16[i] = Eval16nop1D;
431
}
432
else {
433
434
p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
435
p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
436
}
437
}
438
439
return p16;
440
}
441
442
443
444
// Resampling ---------------------------------------------------------------------------------
445
446
#define PRELINEARIZATION_POINTS 4096
447
448
// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
449
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
450
static
451
cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[],
452
CMSREGISTER cmsUInt16Number Out[],
453
CMSREGISTER void* Cargo)
454
{
455
cmsPipeline* Lut = (cmsPipeline*) Cargo;
456
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
457
cmsUInt32Number i;
458
459
_cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
460
_cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
461
462
// From 16 bit to floating point
463
for (i=0; i < Lut ->InputChannels; i++)
464
InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
465
466
// Evaluate in floating point
467
cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
468
469
// Back to 16 bits representation
470
for (i=0; i < Lut ->OutputChannels; i++)
471
Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
472
473
// Always succeed
474
return TRUE;
475
}
476
477
// Try to see if the curves of a given MPE are linear
478
static
479
cmsBool AllCurvesAreLinear(cmsStage* mpe)
480
{
481
cmsToneCurve** Curves;
482
cmsUInt32Number i, n;
483
484
Curves = _cmsStageGetPtrToCurveSet(mpe);
485
if (Curves == NULL) return FALSE;
486
487
n = cmsStageOutputChannels(mpe);
488
489
for (i=0; i < n; i++) {
490
if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
491
}
492
493
return TRUE;
494
}
495
496
// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
497
// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
498
static
499
cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
500
cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
501
{
502
_cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
503
cmsInterpParams* p16 = Grid ->Params;
504
cmsFloat64Number px, py, pz, pw;
505
int x0, y0, z0, w0;
506
int i, index;
507
508
if (CLUT -> Type != cmsSigCLutElemType) {
509
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
510
return FALSE;
511
}
512
513
if (nChannelsIn == 4) {
514
515
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
516
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
517
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
518
pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
519
520
x0 = (int) floor(px);
521
y0 = (int) floor(py);
522
z0 = (int) floor(pz);
523
w0 = (int) floor(pw);
524
525
if (((px - x0) != 0) ||
526
((py - y0) != 0) ||
527
((pz - z0) != 0) ||
528
((pw - w0) != 0)) return FALSE; // Not on exact node
529
530
index = (int) p16 -> opta[3] * x0 +
531
(int) p16 -> opta[2] * y0 +
532
(int) p16 -> opta[1] * z0 +
533
(int) p16 -> opta[0] * w0;
534
}
535
else
536
if (nChannelsIn == 3) {
537
538
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
539
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
540
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
541
542
x0 = (int) floor(px);
543
y0 = (int) floor(py);
544
z0 = (int) floor(pz);
545
546
if (((px - x0) != 0) ||
547
((py - y0) != 0) ||
548
((pz - z0) != 0)) return FALSE; // Not on exact node
549
550
index = (int) p16 -> opta[2] * x0 +
551
(int) p16 -> opta[1] * y0 +
552
(int) p16 -> opta[0] * z0;
553
}
554
else
555
if (nChannelsIn == 1) {
556
557
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
558
559
x0 = (int) floor(px);
560
561
if (((px - x0) != 0)) return FALSE; // Not on exact node
562
563
index = (int) p16 -> opta[0] * x0;
564
}
565
else {
566
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
567
return FALSE;
568
}
569
570
for (i = 0; i < (int) nChannelsOut; i++)
571
Grid->Tab.T[index + i] = Value[i];
572
573
return TRUE;
574
}
575
576
// Auxiliary, to see if two values are equal or very different
577
static
578
cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
579
{
580
cmsUInt32Number i;
581
582
for (i=0; i < n; i++) {
583
584
if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
585
if (White1[i] != White2[i]) return FALSE;
586
}
587
return TRUE;
588
}
589
590
591
// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
592
static
593
cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
594
{
595
cmsUInt16Number *WhitePointIn, *WhitePointOut;
596
cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
597
cmsUInt32Number i, nOuts, nIns;
598
cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
599
600
if (!_cmsEndPointsBySpace(EntryColorSpace,
601
&WhitePointIn, NULL, &nIns)) return FALSE;
602
603
if (!_cmsEndPointsBySpace(ExitColorSpace,
604
&WhitePointOut, NULL, &nOuts)) return FALSE;
605
606
// It needs to be fixed?
607
if (Lut ->InputChannels != nIns) return FALSE;
608
if (Lut ->OutputChannels != nOuts) return FALSE;
609
610
cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
611
612
if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
613
614
// Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
615
if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
616
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
617
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
618
if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
619
return FALSE;
620
621
// We need to interpolate white points of both, pre and post curves
622
if (PreLin) {
623
624
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
625
626
for (i=0; i < nIns; i++) {
627
WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
628
}
629
}
630
else {
631
for (i=0; i < nIns; i++)
632
WhiteIn[i] = WhitePointIn[i];
633
}
634
635
// If any post-linearization, we need to find how is represented white before the curve, do
636
// a reverse interpolation in this case.
637
if (PostLin) {
638
639
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
640
641
for (i=0; i < nOuts; i++) {
642
643
cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
644
if (InversePostLin == NULL) {
645
WhiteOut[i] = WhitePointOut[i];
646
647
} else {
648
649
WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
650
cmsFreeToneCurve(InversePostLin);
651
}
652
}
653
}
654
else {
655
for (i=0; i < nOuts; i++)
656
WhiteOut[i] = WhitePointOut[i];
657
}
658
659
// Ok, proceed with patching. May fail and we don't care if it fails
660
PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
661
662
return TRUE;
663
}
664
665
// -----------------------------------------------------------------------------------------------------------------------------------------------
666
// This function creates simple LUT from complex ones. The generated LUT has an optional set of
667
// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
668
// These curves have to exist in the original LUT in order to be used in the simplified output.
669
// Caller may also use the flags to allow this feature.
670
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
671
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
672
// -----------------------------------------------------------------------------------------------------------------------------------------------
673
674
static
675
cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
676
{
677
cmsPipeline* Src = NULL;
678
cmsPipeline* Dest = NULL;
679
cmsStage* mpe;
680
cmsStage* CLUT;
681
cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
682
cmsUInt32Number nGridPoints;
683
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
684
cmsStage *NewPreLin = NULL;
685
cmsStage *NewPostLin = NULL;
686
_cmsStageCLutData* DataCLUT;
687
cmsToneCurve** DataSetIn;
688
cmsToneCurve** DataSetOut;
689
Prelin16Data* p16;
690
691
// This is a lossy optimization! does not apply in floating-point cases
692
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
693
694
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
695
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
696
697
// Color space must be specified
698
if (ColorSpace == (cmsColorSpaceSignature)0 ||
699
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
700
701
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
702
703
// For empty LUTs, 2 points are enough
704
if (cmsPipelineStageCount(*Lut) == 0)
705
nGridPoints = 2;
706
707
Src = *Lut;
708
709
// Named color pipelines cannot be optimized either
710
for (mpe = cmsPipelineGetPtrToFirstStage(Src);
711
mpe != NULL;
712
mpe = cmsStageNext(mpe)) {
713
if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
714
}
715
716
// Allocate an empty LUT
717
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
718
if (!Dest) return FALSE;
719
720
// Prelinearization tables are kept unless indicated by flags
721
if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
722
723
// Get a pointer to the prelinearization element
724
cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
725
726
// Check if suitable
727
if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
728
729
// Maybe this is a linear tram, so we can avoid the whole stuff
730
if (!AllCurvesAreLinear(PreLin)) {
731
732
// All seems ok, proceed.
733
NewPreLin = cmsStageDup(PreLin);
734
if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
735
goto Error;
736
737
// Remove prelinearization. Since we have duplicated the curve
738
// in destination LUT, the sampling should be applied after this stage.
739
cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
740
}
741
}
742
}
743
744
// Allocate the CLUT
745
CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
746
if (CLUT == NULL) goto Error;
747
748
// Add the CLUT to the destination LUT
749
if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
750
goto Error;
751
}
752
753
// Postlinearization tables are kept unless indicated by flags
754
if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
755
756
// Get a pointer to the postlinearization if present
757
cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
758
759
// Check if suitable
760
if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
761
762
// Maybe this is a linear tram, so we can avoid the whole stuff
763
if (!AllCurvesAreLinear(PostLin)) {
764
765
// All seems ok, proceed.
766
NewPostLin = cmsStageDup(PostLin);
767
if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
768
goto Error;
769
770
// In destination LUT, the sampling should be applied after this stage.
771
cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
772
}
773
}
774
}
775
776
// Now its time to do the sampling. We have to ignore pre/post linearization
777
// The source LUT without pre/post curves is passed as parameter.
778
if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
779
Error:
780
// Ops, something went wrong, Restore stages
781
if (KeepPreLin != NULL) {
782
if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
783
_cmsAssert(0); // This never happens
784
}
785
}
786
if (KeepPostLin != NULL) {
787
if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
788
_cmsAssert(0); // This never happens
789
}
790
}
791
cmsPipelineFree(Dest);
792
return FALSE;
793
}
794
795
// Done.
796
797
if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
798
if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
799
cmsPipelineFree(Src);
800
801
DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
802
803
if (NewPreLin == NULL) DataSetIn = NULL;
804
else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
805
806
if (NewPostLin == NULL) DataSetOut = NULL;
807
else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
808
809
810
if (DataSetIn == NULL && DataSetOut == NULL) {
811
812
_cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
813
}
814
else {
815
816
p16 = PrelinOpt16alloc(Dest ->ContextID,
817
DataCLUT ->Params,
818
Dest ->InputChannels,
819
DataSetIn,
820
Dest ->OutputChannels,
821
DataSetOut);
822
823
_cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
824
}
825
826
827
// Don't fix white on absolute colorimetric
828
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
829
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
830
831
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
832
833
FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
834
}
835
836
*Lut = Dest;
837
return TRUE;
838
839
cmsUNUSED_PARAMETER(Intent);
840
}
841
842
843
// -----------------------------------------------------------------------------------------------------------------------------------------------
844
// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
845
// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
846
// for RGB transforms. See the paper for more details
847
// -----------------------------------------------------------------------------------------------------------------------------------------------
848
849
850
// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
851
// Descending curves are handled as well.
852
static
853
void SlopeLimiting(cmsToneCurve* g)
854
{
855
int BeginVal, EndVal;
856
int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
857
int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
858
cmsFloat64Number Val, Slope, beta;
859
int i;
860
861
if (cmsIsToneCurveDescending(g)) {
862
BeginVal = 0xffff; EndVal = 0;
863
}
864
else {
865
BeginVal = 0; EndVal = 0xffff;
866
}
867
868
// Compute slope and offset for begin of curve
869
Val = g ->Table16[AtBegin];
870
Slope = (Val - BeginVal) / AtBegin;
871
beta = Val - Slope * AtBegin;
872
873
for (i=0; i < AtBegin; i++)
874
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
875
876
// Compute slope and offset for the end
877
Val = g ->Table16[AtEnd];
878
Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
879
beta = Val - Slope * AtEnd;
880
881
for (i = AtEnd; i < (int) g ->nEntries; i++)
882
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
883
}
884
885
886
// Precomputes tables for 8-bit on input devicelink.
887
static
888
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
889
{
890
int i;
891
cmsUInt16Number Input[3];
892
cmsS15Fixed16Number v1, v2, v3;
893
Prelin8Data* p8;
894
895
p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
896
if (p8 == NULL) return NULL;
897
898
// Since this only works for 8 bit input, values comes always as x * 257,
899
// we can safely take msb byte (x << 8 + x)
900
901
for (i=0; i < 256; i++) {
902
903
if (G != NULL) {
904
905
// Get 16-bit representation
906
Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
907
Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
908
Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
909
}
910
else {
911
Input[0] = FROM_8_TO_16(i);
912
Input[1] = FROM_8_TO_16(i);
913
Input[2] = FROM_8_TO_16(i);
914
}
915
916
917
// Move to 0..1.0 in fixed domain
918
v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
919
v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
920
v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
921
922
// Store the precalculated table of nodes
923
p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
924
p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
925
p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
926
927
// Store the precalculated table of offsets
928
p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
929
p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
930
p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
931
}
932
933
p8 ->ContextID = ContextID;
934
p8 ->p = p;
935
936
return p8;
937
}
938
939
static
940
void Prelin8free(cmsContext ContextID, void* ptr)
941
{
942
_cmsFree(ContextID, ptr);
943
}
944
945
static
946
void* Prelin8dup(cmsContext ContextID, const void* ptr)
947
{
948
return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
949
}
950
951
952
953
// A optimized interpolation for 8-bit input.
954
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
955
static CMS_NO_SANITIZE
956
void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
957
CMSREGISTER cmsUInt16Number Output[],
958
CMSREGISTER const void* D)
959
{
960
961
cmsUInt8Number r, g, b;
962
cmsS15Fixed16Number rx, ry, rz;
963
cmsS15Fixed16Number c0, c1, c2, c3, Rest;
964
int OutChan;
965
CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
966
Prelin8Data* p8 = (Prelin8Data*) D;
967
CMSREGISTER const cmsInterpParams* p = p8 ->p;
968
int TotalOut = (int) p -> nOutputs;
969
const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
970
971
r = (cmsUInt8Number) (Input[0] >> 8);
972
g = (cmsUInt8Number) (Input[1] >> 8);
973
b = (cmsUInt8Number) (Input[2] >> 8);
974
975
X0 = (cmsS15Fixed16Number) p8->X0[r];
976
Y0 = (cmsS15Fixed16Number) p8->Y0[g];
977
Z0 = (cmsS15Fixed16Number) p8->Z0[b];
978
979
rx = p8 ->rx[r];
980
ry = p8 ->ry[g];
981
rz = p8 ->rz[b];
982
983
X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
984
Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
985
Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
986
987
988
// These are the 6 Tetrahedral
989
for (OutChan=0; OutChan < TotalOut; OutChan++) {
990
991
c0 = DENS(X0, Y0, Z0);
992
993
if (rx >= ry && ry >= rz)
994
{
995
c1 = DENS(X1, Y0, Z0) - c0;
996
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
997
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
998
}
999
else
1000
if (rx >= rz && rz >= ry)
1001
{
1002
c1 = DENS(X1, Y0, Z0) - c0;
1003
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
1004
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
1005
}
1006
else
1007
if (rz >= rx && rx >= ry)
1008
{
1009
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
1010
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
1011
c3 = DENS(X0, Y0, Z1) - c0;
1012
}
1013
else
1014
if (ry >= rx && rx >= rz)
1015
{
1016
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
1017
c2 = DENS(X0, Y1, Z0) - c0;
1018
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1019
}
1020
else
1021
if (ry >= rz && rz >= rx)
1022
{
1023
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1024
c2 = DENS(X0, Y1, Z0) - c0;
1025
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1026
}
1027
else
1028
if (rz >= ry && ry >= rx)
1029
{
1030
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1031
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1032
c3 = DENS(X0, Y0, Z1) - c0;
1033
}
1034
else {
1035
c1 = c2 = c3 = 0;
1036
}
1037
1038
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1039
Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1040
1041
}
1042
}
1043
1044
#undef DENS
1045
1046
1047
// Curves that contain wide empty areas are not optimizeable
1048
static
1049
cmsBool IsDegenerated(const cmsToneCurve* g)
1050
{
1051
cmsUInt32Number i, Zeros = 0, Poles = 0;
1052
cmsUInt32Number nEntries = g ->nEntries;
1053
1054
for (i=0; i < nEntries; i++) {
1055
1056
if (g ->Table16[i] == 0x0000) Zeros++;
1057
if (g ->Table16[i] == 0xffff) Poles++;
1058
}
1059
1060
if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1061
if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1062
if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1063
1064
return FALSE;
1065
}
1066
1067
// --------------------------------------------------------------------------------------------------------------
1068
// We need xput over here
1069
1070
static
1071
cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1072
{
1073
cmsPipeline* OriginalLut;
1074
cmsUInt32Number nGridPoints;
1075
cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1076
cmsUInt32Number t, i;
1077
cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1078
cmsBool lIsSuitable, lIsLinear;
1079
cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1080
cmsStage* OptimizedCLUTmpe;
1081
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1082
cmsStage* OptimizedPrelinMpe;
1083
cmsStage* mpe;
1084
cmsToneCurve** OptimizedPrelinCurves;
1085
_cmsStageCLutData* OptimizedPrelinCLUT;
1086
1087
1088
// This is a lossy optimization! does not apply in floating-point cases
1089
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1090
1091
// Only on chunky RGB
1092
if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1093
if (T_PLANAR(*InputFormat)) return FALSE;
1094
1095
if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1096
if (T_PLANAR(*OutputFormat)) return FALSE;
1097
1098
// On 16 bits, user has to specify the feature
1099
if (!_cmsFormatterIs8bit(*InputFormat)) {
1100
if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1101
}
1102
1103
OriginalLut = *Lut;
1104
1105
// Named color pipelines cannot be optimized either
1106
for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1107
mpe != NULL;
1108
mpe = cmsStageNext(mpe)) {
1109
if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1110
}
1111
1112
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1113
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1114
1115
// Color space must be specified
1116
if (ColorSpace == (cmsColorSpaceSignature)0 ||
1117
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1118
1119
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1120
1121
// Empty gamma containers
1122
memset(Trans, 0, sizeof(Trans));
1123
memset(TransReverse, 0, sizeof(TransReverse));
1124
1125
// If the last stage of the original lut are curves, and those curves are
1126
// degenerated, it is likely the transform is squeezing and clipping
1127
// the output from previous CLUT. We cannot optimize this case
1128
{
1129
cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1130
1131
if (last == NULL) goto Error;
1132
if (cmsStageType(last) == cmsSigCurveSetElemType) {
1133
1134
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1135
for (i = 0; i < Data->nCurves; i++) {
1136
if (IsDegenerated(Data->TheCurves[i]))
1137
goto Error;
1138
}
1139
}
1140
}
1141
1142
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1143
Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1144
if (Trans[t] == NULL) goto Error;
1145
}
1146
1147
// Populate the curves
1148
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1149
1150
v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1151
1152
// Feed input with a gray ramp
1153
for (t=0; t < OriginalLut ->InputChannels; t++)
1154
In[t] = v;
1155
1156
// Evaluate the gray value
1157
cmsPipelineEvalFloat(In, Out, OriginalLut);
1158
1159
// Store result in curve
1160
for (t=0; t < OriginalLut ->InputChannels; t++)
1161
Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1162
}
1163
1164
// Slope-limit the obtained curves
1165
for (t = 0; t < OriginalLut ->InputChannels; t++)
1166
SlopeLimiting(Trans[t]);
1167
1168
// Check for validity
1169
lIsSuitable = TRUE;
1170
lIsLinear = TRUE;
1171
for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1172
1173
// Exclude if already linear
1174
if (!cmsIsToneCurveLinear(Trans[t]))
1175
lIsLinear = FALSE;
1176
1177
// Exclude if non-monotonic
1178
if (!cmsIsToneCurveMonotonic(Trans[t]))
1179
lIsSuitable = FALSE;
1180
1181
if (IsDegenerated(Trans[t]))
1182
lIsSuitable = FALSE;
1183
}
1184
1185
// If it is not suitable, just quit
1186
if (!lIsSuitable) goto Error;
1187
1188
// Invert curves if possible
1189
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1190
TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1191
if (TransReverse[t] == NULL) goto Error;
1192
}
1193
1194
// Now inset the reversed curves at the begin of transform
1195
LutPlusCurves = cmsPipelineDup(OriginalLut);
1196
if (LutPlusCurves == NULL) goto Error;
1197
1198
if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1199
goto Error;
1200
1201
// Create the result LUT
1202
OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1203
if (OptimizedLUT == NULL) goto Error;
1204
1205
OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1206
1207
// Create and insert the curves at the beginning
1208
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1209
goto Error;
1210
1211
// Allocate the CLUT for result
1212
OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1213
1214
// Add the CLUT to the destination LUT
1215
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1216
goto Error;
1217
1218
// Resample the LUT
1219
if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1220
1221
// Free resources
1222
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1223
1224
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1225
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1226
}
1227
1228
cmsPipelineFree(LutPlusCurves);
1229
1230
1231
OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1232
OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1233
1234
// Set the evaluator if 8-bit
1235
if (_cmsFormatterIs8bit(*InputFormat)) {
1236
1237
Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1238
OptimizedPrelinCLUT ->Params,
1239
OptimizedPrelinCurves);
1240
if (p8 == NULL) return FALSE;
1241
1242
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1243
1244
}
1245
else
1246
{
1247
Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1248
OptimizedPrelinCLUT ->Params,
1249
3, OptimizedPrelinCurves, 3, NULL);
1250
if (p16 == NULL) return FALSE;
1251
1252
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1253
1254
}
1255
1256
// Don't fix white on absolute colorimetric
1257
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1258
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1259
1260
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1261
1262
if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1263
1264
return FALSE;
1265
}
1266
}
1267
1268
// And return the obtained LUT
1269
1270
cmsPipelineFree(OriginalLut);
1271
*Lut = OptimizedLUT;
1272
return TRUE;
1273
1274
Error:
1275
1276
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1277
1278
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1279
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1280
}
1281
1282
if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1283
if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1284
1285
return FALSE;
1286
1287
cmsUNUSED_PARAMETER(Intent);
1288
cmsUNUSED_PARAMETER(lIsLinear);
1289
}
1290
1291
1292
// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1293
1294
static
1295
void CurvesFree(cmsContext ContextID, void* ptr)
1296
{
1297
Curves16Data* Data = (Curves16Data*) ptr;
1298
cmsUInt32Number i;
1299
1300
for (i=0; i < Data -> nCurves; i++) {
1301
1302
_cmsFree(ContextID, Data ->Curves[i]);
1303
}
1304
1305
_cmsFree(ContextID, Data ->Curves);
1306
_cmsFree(ContextID, ptr);
1307
}
1308
1309
static
1310
void* CurvesDup(cmsContext ContextID, const void* ptr)
1311
{
1312
Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1313
cmsUInt32Number i;
1314
1315
if (Data == NULL) return NULL;
1316
1317
Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1318
1319
for (i=0; i < Data -> nCurves; i++) {
1320
Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1321
}
1322
1323
return (void*) Data;
1324
}
1325
1326
// Precomputes tables for 8-bit on input devicelink.
1327
static
1328
Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1329
{
1330
cmsUInt32Number i, j;
1331
Curves16Data* c16;
1332
1333
c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1334
if (c16 == NULL) return NULL;
1335
1336
c16 ->nCurves = nCurves;
1337
c16 ->nElements = nElements;
1338
1339
c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1340
if (c16->Curves == NULL) {
1341
_cmsFree(ContextID, c16);
1342
return NULL;
1343
}
1344
1345
for (i=0; i < nCurves; i++) {
1346
1347
c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1348
1349
if (c16->Curves[i] == NULL) {
1350
1351
for (j=0; j < i; j++) {
1352
_cmsFree(ContextID, c16->Curves[j]);
1353
}
1354
_cmsFree(ContextID, c16->Curves);
1355
_cmsFree(ContextID, c16);
1356
return NULL;
1357
}
1358
1359
if (nElements == 256U) {
1360
1361
for (j=0; j < nElements; j++) {
1362
1363
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1364
}
1365
}
1366
else {
1367
1368
for (j=0; j < nElements; j++) {
1369
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1370
}
1371
}
1372
}
1373
1374
return c16;
1375
}
1376
1377
static
1378
void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1379
CMSREGISTER cmsUInt16Number Out[],
1380
CMSREGISTER const void* D)
1381
{
1382
Curves16Data* Data = (Curves16Data*) D;
1383
int x;
1384
cmsUInt32Number i;
1385
1386
for (i=0; i < Data ->nCurves; i++) {
1387
1388
x = (In[i] >> 8);
1389
Out[i] = Data -> Curves[i][x];
1390
}
1391
}
1392
1393
1394
static
1395
void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1396
CMSREGISTER cmsUInt16Number Out[],
1397
CMSREGISTER const void* D)
1398
{
1399
Curves16Data* Data = (Curves16Data*) D;
1400
cmsUInt32Number i;
1401
1402
for (i=0; i < Data ->nCurves; i++) {
1403
Out[i] = Data -> Curves[i][In[i]];
1404
}
1405
}
1406
1407
1408
static
1409
void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1410
CMSREGISTER cmsUInt16Number Out[],
1411
CMSREGISTER const void* D)
1412
{
1413
cmsPipeline* Lut = (cmsPipeline*) D;
1414
cmsUInt32Number i;
1415
1416
for (i=0; i < Lut ->InputChannels; i++) {
1417
Out[i] = In[i];
1418
}
1419
}
1420
1421
1422
// If the target LUT holds only curves, the optimization procedure is to join all those
1423
// curves together. That only works on curves and does not work on matrices.
1424
static
1425
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1426
{
1427
cmsToneCurve** GammaTables = NULL;
1428
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1429
cmsUInt32Number i, j;
1430
cmsPipeline* Src = *Lut;
1431
cmsPipeline* Dest = NULL;
1432
cmsStage* mpe;
1433
cmsStage* ObtainedCurves = NULL;
1434
1435
1436
// This is a lossy optimization! does not apply in floating-point cases
1437
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1438
1439
// Only curves in this LUT?
1440
for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1441
mpe != NULL;
1442
mpe = cmsStageNext(mpe)) {
1443
if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1444
}
1445
1446
// Allocate an empty LUT
1447
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1448
if (Dest == NULL) return FALSE;
1449
1450
// Create target curves
1451
GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1452
if (GammaTables == NULL) goto Error;
1453
1454
for (i=0; i < Src ->InputChannels; i++) {
1455
GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1456
if (GammaTables[i] == NULL) goto Error;
1457
}
1458
1459
// Compute 16 bit result by using floating point
1460
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1461
1462
for (j=0; j < Src ->InputChannels; j++)
1463
InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1464
1465
cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1466
1467
for (j=0; j < Src ->InputChannels; j++)
1468
GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1469
}
1470
1471
ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1472
if (ObtainedCurves == NULL) goto Error;
1473
1474
for (i=0; i < Src ->InputChannels; i++) {
1475
cmsFreeToneCurve(GammaTables[i]);
1476
GammaTables[i] = NULL;
1477
}
1478
1479
if (GammaTables != NULL) {
1480
_cmsFree(Src->ContextID, GammaTables);
1481
GammaTables = NULL;
1482
}
1483
1484
// Maybe the curves are linear at the end
1485
if (!AllCurvesAreLinear(ObtainedCurves)) {
1486
_cmsStageToneCurvesData* Data;
1487
1488
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1489
goto Error;
1490
Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1491
ObtainedCurves = NULL;
1492
1493
// If the curves are to be applied in 8 bits, we can save memory
1494
if (_cmsFormatterIs8bit(*InputFormat)) {
1495
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1496
1497
if (c16 == NULL) goto Error;
1498
*dwFlags |= cmsFLAGS_NOCACHE;
1499
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1500
1501
}
1502
else {
1503
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1504
1505
if (c16 == NULL) goto Error;
1506
*dwFlags |= cmsFLAGS_NOCACHE;
1507
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1508
}
1509
}
1510
else {
1511
1512
// LUT optimizes to nothing. Set the identity LUT
1513
cmsStageFree(ObtainedCurves);
1514
ObtainedCurves = NULL;
1515
1516
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1517
goto Error;
1518
1519
*dwFlags |= cmsFLAGS_NOCACHE;
1520
_cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1521
}
1522
1523
// We are done.
1524
cmsPipelineFree(Src);
1525
*Lut = Dest;
1526
return TRUE;
1527
1528
Error:
1529
1530
if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1531
if (GammaTables != NULL) {
1532
for (i=0; i < Src ->InputChannels; i++) {
1533
if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1534
}
1535
1536
_cmsFree(Src ->ContextID, GammaTables);
1537
}
1538
1539
if (Dest != NULL) cmsPipelineFree(Dest);
1540
return FALSE;
1541
1542
cmsUNUSED_PARAMETER(Intent);
1543
cmsUNUSED_PARAMETER(InputFormat);
1544
cmsUNUSED_PARAMETER(OutputFormat);
1545
cmsUNUSED_PARAMETER(dwFlags);
1546
}
1547
1548
// -------------------------------------------------------------------------------------------------------------------------------------
1549
// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1550
1551
1552
static
1553
void FreeMatShaper(cmsContext ContextID, void* Data)
1554
{
1555
if (Data != NULL) _cmsFree(ContextID, Data);
1556
}
1557
1558
static
1559
void* DupMatShaper(cmsContext ContextID, const void* Data)
1560
{
1561
return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1562
}
1563
1564
1565
// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1566
// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1567
// in total about 50K, and the performance boost is huge!
1568
static
1569
void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1570
CMSREGISTER cmsUInt16Number Out[],
1571
CMSREGISTER const void* D)
1572
{
1573
MatShaper8Data* p = (MatShaper8Data*) D;
1574
cmsS1Fixed14Number l1, l2, l3, r, g, b;
1575
cmsUInt32Number ri, gi, bi;
1576
1577
// In this case (and only in this case!) we can use this simplification since
1578
// In[] is assured to come from a 8 bit number. (a << 8 | a)
1579
ri = In[0] & 0xFFU;
1580
gi = In[1] & 0xFFU;
1581
bi = In[2] & 0xFFU;
1582
1583
// Across first shaper, which also converts to 1.14 fixed point
1584
r = p->Shaper1R[ri];
1585
g = p->Shaper1G[gi];
1586
b = p->Shaper1B[bi];
1587
1588
// Evaluate the matrix in 1.14 fixed point
1589
l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1590
l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1591
l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1592
1593
// Now we have to clip to 0..1.0 range
1594
ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1595
gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1596
bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1597
1598
// And across second shaper,
1599
Out[0] = p->Shaper2R[ri];
1600
Out[1] = p->Shaper2G[gi];
1601
Out[2] = p->Shaper2B[bi];
1602
1603
}
1604
1605
// This table converts from 8 bits to 1.14 after applying the curve
1606
static
1607
void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1608
{
1609
int i;
1610
cmsFloat32Number R, y;
1611
1612
for (i=0; i < 256; i++) {
1613
1614
R = (cmsFloat32Number) (i / 255.0);
1615
y = cmsEvalToneCurveFloat(Curve, R);
1616
1617
if (y < 131072.0)
1618
Table[i] = DOUBLE_TO_1FIXED14(y);
1619
else
1620
Table[i] = 0x7fffffff;
1621
}
1622
}
1623
1624
// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1625
static
1626
void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1627
{
1628
int i;
1629
cmsFloat32Number R, Val;
1630
1631
for (i=0; i < 16385; i++) {
1632
1633
R = (cmsFloat32Number) (i / 16384.0);
1634
Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1635
1636
if (Val < 0)
1637
Val = 0;
1638
1639
if (Val > 1.0)
1640
Val = 1.0;
1641
1642
if (Is8BitsOutput) {
1643
1644
// If 8 bits output, we can optimize further by computing the / 257 part.
1645
// first we compute the resulting byte and then we store the byte times
1646
// 257. This quantization allows to round very quick by doing a >> 8, but
1647
// since the low byte is always equal to msb, we can do a & 0xff and this works!
1648
cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1649
cmsUInt8Number b = FROM_16_TO_8(w);
1650
1651
Table[i] = FROM_8_TO_16(b);
1652
}
1653
else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1654
}
1655
}
1656
1657
// Compute the matrix-shaper structure
1658
static
1659
cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1660
{
1661
MatShaper8Data* p;
1662
int i, j;
1663
cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1664
1665
// Allocate a big chuck of memory to store precomputed tables
1666
p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1667
if (p == NULL) return FALSE;
1668
1669
p -> ContextID = Dest -> ContextID;
1670
1671
// Precompute tables
1672
FillFirstShaper(p ->Shaper1R, Curve1[0]);
1673
FillFirstShaper(p ->Shaper1G, Curve1[1]);
1674
FillFirstShaper(p ->Shaper1B, Curve1[2]);
1675
1676
FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1677
FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1678
FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1679
1680
// Convert matrix to nFixed14. Note that those values may take more than 16 bits
1681
for (i=0; i < 3; i++) {
1682
for (j=0; j < 3; j++) {
1683
p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1684
}
1685
}
1686
1687
for (i=0; i < 3; i++) {
1688
1689
if (Off == NULL) {
1690
p ->Off[i] = 0;
1691
}
1692
else {
1693
p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1694
}
1695
}
1696
1697
// Mark as optimized for faster formatter
1698
if (Is8Bits)
1699
*OutputFormat |= OPTIMIZED_SH(1);
1700
1701
// Fill function pointers
1702
_cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1703
return TRUE;
1704
}
1705
1706
// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1707
static
1708
cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1709
{
1710
cmsStage* Curve1, *Curve2;
1711
cmsStage* Matrix1, *Matrix2;
1712
cmsMAT3 res;
1713
cmsBool IdentityMat;
1714
cmsPipeline* Dest, *Src;
1715
cmsFloat64Number* Offset;
1716
1717
// Only works on RGB to RGB
1718
if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1719
1720
// Only works on 8 bit input
1721
if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1722
1723
// Seems suitable, proceed
1724
Src = *Lut;
1725
1726
// Check for:
1727
//
1728
// shaper-matrix-matrix-shaper
1729
// shaper-matrix-shaper
1730
//
1731
// Both of those constructs are possible (first because abs. colorimetric).
1732
// additionally, In the first case, the input matrix offset should be zero.
1733
1734
IdentityMat = FALSE;
1735
if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1736
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1737
&Curve1, &Matrix1, &Matrix2, &Curve2)) {
1738
1739
// Get both matrices
1740
_cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1741
_cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1742
1743
// Input offset should be zero
1744
if (Data1->Offset != NULL) return FALSE;
1745
1746
// Multiply both matrices to get the result
1747
_cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1748
1749
// Only 2nd matrix has offset, or it is zero
1750
Offset = Data2->Offset;
1751
1752
// Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1753
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1754
1755
// We can get rid of full matrix
1756
IdentityMat = TRUE;
1757
}
1758
1759
}
1760
else {
1761
1762
if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1763
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1764
&Curve1, &Matrix1, &Curve2)) {
1765
1766
_cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1767
1768
// Copy the matrix to our result
1769
memcpy(&res, Data->Double, sizeof(res));
1770
1771
// Preserve the Odffset (may be NULL as a zero offset)
1772
Offset = Data->Offset;
1773
1774
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1775
1776
// We can get rid of full matrix
1777
IdentityMat = TRUE;
1778
}
1779
}
1780
else
1781
return FALSE; // Not optimizeable this time
1782
1783
}
1784
1785
// Allocate an empty LUT
1786
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1787
if (!Dest) return FALSE;
1788
1789
// Assamble the new LUT
1790
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1791
goto Error;
1792
1793
if (!IdentityMat) {
1794
1795
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1796
goto Error;
1797
}
1798
1799
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1800
goto Error;
1801
1802
// If identity on matrix, we can further optimize the curves, so call the join curves routine
1803
if (IdentityMat) {
1804
1805
OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1806
}
1807
else {
1808
_cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1809
_cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1810
1811
// In this particular optimization, cache does not help as it takes more time to deal with
1812
// the cache that with the pixel handling
1813
*dwFlags |= cmsFLAGS_NOCACHE;
1814
1815
// Setup the optimizarion routines
1816
SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1817
}
1818
1819
cmsPipelineFree(Src);
1820
*Lut = Dest;
1821
return TRUE;
1822
Error:
1823
// Leave Src unchanged
1824
cmsPipelineFree(Dest);
1825
return FALSE;
1826
}
1827
1828
1829
// -------------------------------------------------------------------------------------------------------------------------------------
1830
// Optimization plug-ins
1831
1832
// List of optimizations
1833
typedef struct _cmsOptimizationCollection_st {
1834
1835
_cmsOPToptimizeFn OptimizePtr;
1836
1837
struct _cmsOptimizationCollection_st *Next;
1838
1839
} _cmsOptimizationCollection;
1840
1841
1842
// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1843
static _cmsOptimizationCollection DefaultOptimization[] = {
1844
1845
{ OptimizeByJoiningCurves, &DefaultOptimization[1] },
1846
{ OptimizeMatrixShaper, &DefaultOptimization[2] },
1847
{ OptimizeByComputingLinearization, &DefaultOptimization[3] },
1848
{ OptimizeByResampling, NULL }
1849
};
1850
1851
// The linked list head
1852
_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1853
1854
1855
// Duplicates the zone of memory used by the plug-in in the new context
1856
static
1857
void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1858
const struct _cmsContext_struct* src)
1859
{
1860
_cmsOptimizationPluginChunkType newHead = { NULL };
1861
_cmsOptimizationCollection* entry;
1862
_cmsOptimizationCollection* Anterior = NULL;
1863
_cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1864
1865
_cmsAssert(ctx != NULL);
1866
_cmsAssert(head != NULL);
1867
1868
// Walk the list copying all nodes
1869
for (entry = head->OptimizationCollection;
1870
entry != NULL;
1871
entry = entry ->Next) {
1872
1873
_cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1874
1875
if (newEntry == NULL)
1876
return;
1877
1878
// We want to keep the linked list order, so this is a little bit tricky
1879
newEntry -> Next = NULL;
1880
if (Anterior)
1881
Anterior -> Next = newEntry;
1882
1883
Anterior = newEntry;
1884
1885
if (newHead.OptimizationCollection == NULL)
1886
newHead.OptimizationCollection = newEntry;
1887
}
1888
1889
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1890
}
1891
1892
void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1893
const struct _cmsContext_struct* src)
1894
{
1895
if (src != NULL) {
1896
1897
// Copy all linked list
1898
DupPluginOptimizationList(ctx, src);
1899
}
1900
else {
1901
static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1902
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1903
}
1904
}
1905
1906
1907
// Register new ways to optimize
1908
cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1909
{
1910
cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1911
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1912
_cmsOptimizationCollection* fl;
1913
1914
if (Data == NULL) {
1915
1916
ctx->OptimizationCollection = NULL;
1917
return TRUE;
1918
}
1919
1920
// Optimizer callback is required
1921
if (Plugin ->OptimizePtr == NULL) return FALSE;
1922
1923
fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1924
if (fl == NULL) return FALSE;
1925
1926
// Copy the parameters
1927
fl ->OptimizePtr = Plugin ->OptimizePtr;
1928
1929
// Keep linked list
1930
fl ->Next = ctx->OptimizationCollection;
1931
1932
// Set the head
1933
ctx ->OptimizationCollection = fl;
1934
1935
// All is ok
1936
return TRUE;
1937
}
1938
1939
// The entry point for LUT optimization
1940
cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
1941
cmsPipeline** PtrLut,
1942
cmsUInt32Number Intent,
1943
cmsUInt32Number* InputFormat,
1944
cmsUInt32Number* OutputFormat,
1945
cmsUInt32Number* dwFlags)
1946
{
1947
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1948
_cmsOptimizationCollection* Opts;
1949
cmsBool AnySuccess = FALSE;
1950
1951
// A CLUT is being asked, so force this specific optimization
1952
if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1953
1954
PreOptimize(*PtrLut);
1955
return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1956
}
1957
1958
// Anything to optimize?
1959
if ((*PtrLut) ->Elements == NULL) {
1960
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1961
return TRUE;
1962
}
1963
1964
// Try to get rid of identities and trivial conversions.
1965
AnySuccess = PreOptimize(*PtrLut);
1966
1967
// After removal do we end with an identity?
1968
if ((*PtrLut) ->Elements == NULL) {
1969
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1970
return TRUE;
1971
}
1972
1973
// Do not optimize, keep all precision
1974
if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1975
return FALSE;
1976
1977
// Try plug-in optimizations
1978
for (Opts = ctx->OptimizationCollection;
1979
Opts != NULL;
1980
Opts = Opts ->Next) {
1981
1982
// If one schema succeeded, we are done
1983
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1984
1985
return TRUE; // Optimized!
1986
}
1987
}
1988
1989
// Try built-in optimizations
1990
for (Opts = DefaultOptimization;
1991
Opts != NULL;
1992
Opts = Opts ->Next) {
1993
1994
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1995
1996
return TRUE;
1997
}
1998
}
1999
2000
// Only simple optimizations succeeded
2001
return AnySuccess;
2002
}
2003
2004
2005
2006
2007