Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/liblcms/cmswtpnt.c
41152 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
// This file is available under and governed by the GNU General Public
26
// License version 2 only, as published by the Free Software Foundation.
27
// However, the following notice accompanied the original version of this
28
// file:
29
//
30
//---------------------------------------------------------------------------------
31
//
32
// Little Color Management System
33
// Copyright (c) 1998-2020 Marti Maria Saguer
34
//
35
// Permission is hereby granted, free of charge, to any person obtaining
36
// a copy of this software and associated documentation files (the "Software"),
37
// to deal in the Software without restriction, including without limitation
38
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39
// and/or sell copies of the Software, and to permit persons to whom the Software
40
// is furnished to do so, subject to the following conditions:
41
//
42
// The above copyright notice and this permission notice shall be included in
43
// all copies or substantial portions of the Software.
44
//
45
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52
//
53
//---------------------------------------------------------------------------------
54
//
55
56
#include "lcms2_internal.h"
57
58
59
// D50 - Widely used
60
const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void)
61
{
62
static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z};
63
64
return &D50XYZ;
65
}
66
67
const cmsCIExyY* CMSEXPORT cmsD50_xyY(void)
68
{
69
static cmsCIExyY D50xyY;
70
71
cmsXYZ2xyY(&D50xyY, cmsD50_XYZ());
72
73
return &D50xyY;
74
}
75
76
// Obtains WhitePoint from Temperature
77
cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK)
78
{
79
cmsFloat64Number x, y;
80
cmsFloat64Number T, T2, T3;
81
// cmsFloat64Number M1, M2;
82
83
_cmsAssert(WhitePoint != NULL);
84
85
T = TempK;
86
T2 = T*T; // Square
87
T3 = T2*T; // Cube
88
89
// For correlated color temperature (T) between 4000K and 7000K:
90
91
if (T >= 4000. && T <= 7000.)
92
{
93
x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
94
}
95
else
96
// or for correlated color temperature (T) between 7000K and 25000K:
97
98
if (T > 7000.0 && T <= 25000.0)
99
{
100
x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
101
}
102
else {
103
cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp");
104
return FALSE;
105
}
106
107
// Obtain y(x)
108
y = -3.000*(x*x) + 2.870*x - 0.275;
109
110
// wave factors (not used, but here for futures extensions)
111
112
// M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
113
// M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
114
115
WhitePoint -> x = x;
116
WhitePoint -> y = y;
117
WhitePoint -> Y = 1.0;
118
119
return TRUE;
120
}
121
122
123
124
typedef struct {
125
126
cmsFloat64Number mirek; // temp (in microreciprocal kelvin)
127
cmsFloat64Number ut; // u coord of intersection w/ blackbody locus
128
cmsFloat64Number vt; // v coord of intersection w/ blackbody locus
129
cmsFloat64Number tt; // slope of ISOTEMPERATURE. line
130
131
} ISOTEMPERATURE;
132
133
static const ISOTEMPERATURE isotempdata[] = {
134
// {Mirek, Ut, Vt, Tt }
135
{0, 0.18006, 0.26352, -0.24341},
136
{10, 0.18066, 0.26589, -0.25479},
137
{20, 0.18133, 0.26846, -0.26876},
138
{30, 0.18208, 0.27119, -0.28539},
139
{40, 0.18293, 0.27407, -0.30470},
140
{50, 0.18388, 0.27709, -0.32675},
141
{60, 0.18494, 0.28021, -0.35156},
142
{70, 0.18611, 0.28342, -0.37915},
143
{80, 0.18740, 0.28668, -0.40955},
144
{90, 0.18880, 0.28997, -0.44278},
145
{100, 0.19032, 0.29326, -0.47888},
146
{125, 0.19462, 0.30141, -0.58204},
147
{150, 0.19962, 0.30921, -0.70471},
148
{175, 0.20525, 0.31647, -0.84901},
149
{200, 0.21142, 0.32312, -1.0182 },
150
{225, 0.21807, 0.32909, -1.2168 },
151
{250, 0.22511, 0.33439, -1.4512 },
152
{275, 0.23247, 0.33904, -1.7298 },
153
{300, 0.24010, 0.34308, -2.0637 },
154
{325, 0.24702, 0.34655, -2.4681 },
155
{350, 0.25591, 0.34951, -2.9641 },
156
{375, 0.26400, 0.35200, -3.5814 },
157
{400, 0.27218, 0.35407, -4.3633 },
158
{425, 0.28039, 0.35577, -5.3762 },
159
{450, 0.28863, 0.35714, -6.7262 },
160
{475, 0.29685, 0.35823, -8.5955 },
161
{500, 0.30505, 0.35907, -11.324 },
162
{525, 0.31320, 0.35968, -15.628 },
163
{550, 0.32129, 0.36011, -23.325 },
164
{575, 0.32931, 0.36038, -40.770 },
165
{600, 0.33724, 0.36051, -116.45 }
166
};
167
168
#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
169
170
171
// Robertson's method
172
cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint)
173
{
174
cmsUInt32Number j;
175
cmsFloat64Number us,vs;
176
cmsFloat64Number uj,vj,tj,di,dj,mi,mj;
177
cmsFloat64Number xs, ys;
178
179
_cmsAssert(WhitePoint != NULL);
180
_cmsAssert(TempK != NULL);
181
182
di = mi = 0;
183
xs = WhitePoint -> x;
184
ys = WhitePoint -> y;
185
186
// convert (x,y) to CIE 1960 (u,WhitePoint)
187
188
us = (2*xs) / (-xs + 6*ys + 1.5);
189
vs = (3*ys) / (-xs + 6*ys + 1.5);
190
191
192
for (j=0; j < NISO; j++) {
193
194
uj = isotempdata[j].ut;
195
vj = isotempdata[j].vt;
196
tj = isotempdata[j].tt;
197
mj = isotempdata[j].mirek;
198
199
dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj);
200
201
if ((j != 0) && (di/dj < 0.0)) {
202
203
// Found a match
204
*TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
205
return TRUE;
206
}
207
208
di = dj;
209
mi = mj;
210
}
211
212
// Not found
213
return FALSE;
214
}
215
216
217
// Compute chromatic adaptation matrix using Chad as cone matrix
218
219
static
220
cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion,
221
const cmsCIEXYZ* SourceWhitePoint,
222
const cmsCIEXYZ* DestWhitePoint,
223
const cmsMAT3* Chad)
224
225
{
226
227
cmsMAT3 Chad_Inv;
228
cmsVEC3 ConeSourceXYZ, ConeSourceRGB;
229
cmsVEC3 ConeDestXYZ, ConeDestRGB;
230
cmsMAT3 Cone, Tmp;
231
232
233
Tmp = *Chad;
234
if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE;
235
236
_cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
237
SourceWhitePoint -> Y,
238
SourceWhitePoint -> Z);
239
240
_cmsVEC3init(&ConeDestXYZ, DestWhitePoint -> X,
241
DestWhitePoint -> Y,
242
DestWhitePoint -> Z);
243
244
_cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
245
_cmsMAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ);
246
247
// Build matrix
248
_cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0);
249
_cmsVEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0);
250
_cmsVEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
251
252
253
// Normalize
254
_cmsMAT3per(&Tmp, &Cone, Chad);
255
_cmsMAT3per(Conversion, &Chad_Inv, &Tmp);
256
257
return TRUE;
258
}
259
260
// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
261
// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
262
cmsBool _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll)
263
{
264
cmsMAT3 LamRigg = {{ // Bradford matrix
265
{{ 0.8951, 0.2664, -0.1614 }},
266
{{ -0.7502, 1.7135, 0.0367 }},
267
{{ 0.0389, -0.0685, 1.0296 }}
268
}};
269
270
if (ConeMatrix == NULL)
271
ConeMatrix = &LamRigg;
272
273
return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
274
}
275
276
// Same as anterior, but assuming D50 destination. White point is given in xyY
277
static
278
cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt)
279
{
280
cmsCIEXYZ Dn;
281
cmsMAT3 Bradford;
282
cmsMAT3 Tmp;
283
284
cmsxyY2XYZ(&Dn, SourceWhitePt);
285
286
if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE;
287
288
Tmp = *r;
289
_cmsMAT3per(r, &Bradford, &Tmp);
290
291
return TRUE;
292
}
293
294
// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
295
// This is just an approximation, I am not handling all the non-linear
296
// aspects of the RGB to XYZ process, and assumming that the gamma correction
297
// has transitive property in the transformation chain.
298
//
299
// the alghoritm:
300
//
301
// - First I build the absolute conversion matrix using
302
// primaries in XYZ. This matrix is next inverted
303
// - Then I eval the source white point across this matrix
304
// obtaining the coeficients of the transformation
305
// - Then, I apply these coeficients to the original matrix
306
//
307
cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs)
308
{
309
cmsVEC3 WhitePoint, Coef;
310
cmsMAT3 Result, Primaries;
311
cmsFloat64Number xn, yn;
312
cmsFloat64Number xr, yr;
313
cmsFloat64Number xg, yg;
314
cmsFloat64Number xb, yb;
315
316
xn = WhitePt -> x;
317
yn = WhitePt -> y;
318
xr = Primrs -> Red.x;
319
yr = Primrs -> Red.y;
320
xg = Primrs -> Green.x;
321
yg = Primrs -> Green.y;
322
xb = Primrs -> Blue.x;
323
yb = Primrs -> Blue.y;
324
325
// Build Primaries matrix
326
_cmsVEC3init(&Primaries.v[0], xr, xg, xb);
327
_cmsVEC3init(&Primaries.v[1], yr, yg, yb);
328
_cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb));
329
330
331
// Result = Primaries ^ (-1) inverse matrix
332
if (!_cmsMAT3inverse(&Primaries, &Result))
333
return FALSE;
334
335
336
_cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
337
338
// Across inverse primaries ...
339
_cmsMAT3eval(&Coef, &Result, &WhitePoint);
340
341
// Give us the Coefs, then I build transformation matrix
342
_cmsVEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb);
343
_cmsVEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb);
344
_cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
345
346
347
return _cmsAdaptMatrixToD50(r, WhitePt);
348
349
}
350
351
352
// Adapts a color to a given illuminant. Original color is expected to have
353
// a SourceWhitePt white point.
354
cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result,
355
const cmsCIEXYZ* SourceWhitePt,
356
const cmsCIEXYZ* Illuminant,
357
const cmsCIEXYZ* Value)
358
{
359
cmsMAT3 Bradford;
360
cmsVEC3 In, Out;
361
362
_cmsAssert(Result != NULL);
363
_cmsAssert(SourceWhitePt != NULL);
364
_cmsAssert(Illuminant != NULL);
365
_cmsAssert(Value != NULL);
366
367
if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE;
368
369
_cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z);
370
_cmsMAT3eval(&Out, &Bradford, &In);
371
372
Result -> X = Out.n[0];
373
Result -> Y = Out.n[1];
374
Result -> Z = Out.n[2];
375
376
return TRUE;
377
}
378
379
380
381