Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/jdk.crypto.ec/share/classes/sun/security/ec/XECOperations.java
41161 views
1
/*
2
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.security.ec;
27
28
import sun.security.util.math.IntegerFieldModuloP;
29
import sun.security.util.math.ImmutableIntegerModuloP;
30
import sun.security.util.math.IntegerModuloP;
31
import sun.security.util.math.MutableIntegerModuloP;
32
import sun.security.util.math.SmallValue;
33
import sun.security.util.math.intpoly.IntegerPolynomial25519;
34
import sun.security.util.math.intpoly.IntegerPolynomial448;
35
36
import java.math.BigInteger;
37
import java.security.ProviderException;
38
import java.security.SecureRandom;
39
40
public class XECOperations {
41
42
private final XECParameters params;
43
private final IntegerFieldModuloP field;
44
private final ImmutableIntegerModuloP zero;
45
private final ImmutableIntegerModuloP one;
46
private final SmallValue a24;
47
private final ImmutableIntegerModuloP basePoint;
48
49
public XECOperations(XECParameters c) {
50
this.params = c;
51
52
BigInteger p = params.getP();
53
this.field = getIntegerFieldModulo(p);
54
this.zero = field.getElement(BigInteger.ZERO).fixed();
55
this.one = field.get1().fixed();
56
this.a24 = field.getSmallValue(params.getA24());
57
this.basePoint = field.getElement(
58
BigInteger.valueOf(c.getBasePoint()));
59
}
60
61
public XECParameters getParameters() {
62
return params;
63
}
64
65
public byte[] generatePrivate(SecureRandom random) {
66
byte[] result = new byte[this.params.getBytes()];
67
random.nextBytes(result);
68
return result;
69
}
70
71
/**
72
* Compute a public key from an encoded private key. This method will
73
* modify the supplied array in order to prune it.
74
*/
75
public BigInteger computePublic(byte[] k) {
76
pruneK(k);
77
return pointMultiply(k, this.basePoint).asBigInteger();
78
}
79
80
/**
81
*
82
* Multiply an encoded scalar with a point as a BigInteger and return an
83
* encoded point. The array k holding the scalar will be pruned by
84
* modifying it in place.
85
*
86
* @param k an encoded scalar
87
* @param u the u-coordinate of a point as a BigInteger
88
* @return the encoded product
89
*/
90
public byte[] encodedPointMultiply(byte[] k, BigInteger u) {
91
pruneK(k);
92
ImmutableIntegerModuloP elemU = field.getElement(u);
93
return pointMultiply(k, elemU).asByteArray(params.getBytes());
94
}
95
96
/**
97
*
98
* Multiply an encoded scalar with an encoded point and return an encoded
99
* point. The array k holding the scalar will be pruned by
100
* modifying it in place.
101
*
102
* @param k an encoded scalar
103
* @param u an encoded point
104
* @return the encoded product
105
*/
106
public byte[] encodedPointMultiply(byte[] k, byte[] u) {
107
pruneK(k);
108
ImmutableIntegerModuloP elemU = decodeU(u);
109
return pointMultiply(k, elemU).asByteArray(params.getBytes());
110
}
111
112
/**
113
* Return the field element corresponding to an encoded u-coordinate.
114
* This method prunes u by modifying it in place.
115
*
116
* @param u
117
* @param bits
118
* @return
119
*/
120
private ImmutableIntegerModuloP decodeU(byte[] u, int bits) {
121
122
maskHighOrder(u, bits);
123
124
return field.getElement(u);
125
}
126
127
/**
128
* Mask off the high order bits of an encoded integer in an array. The
129
* array is modified in place.
130
*
131
* @param arr an array containing an encoded integer
132
* @param bits the number of bits to keep
133
* @return the number, in range [1,8], of bits kept in the highest byte
134
*/
135
private static byte maskHighOrder(byte[] arr, int bits) {
136
137
int lastByteIndex = arr.length - 1;
138
byte bitsMod8 = (byte) (bits % 8);
139
byte highBits = bitsMod8 == 0 ? 8 : bitsMod8;
140
byte msbMaskOff = (byte) ((1 << highBits) - 1);
141
arr[lastByteIndex] &= msbMaskOff;
142
143
return highBits;
144
}
145
146
/**
147
* Prune an encoded scalar value by modifying it in place. The extra
148
* high-order bits are masked off, the highest valid bit it set, and the
149
* number is rounded down to a multiple of the cofactor.
150
*
151
* @param k an encoded scalar value
152
* @param bits the number of bits in the scalar
153
* @param logCofactor the base-2 logarithm of the cofactor
154
*/
155
private static void pruneK(byte[] k, int bits, int logCofactor) {
156
157
int lastByteIndex = k.length - 1;
158
159
// mask off unused high-order bits
160
byte highBits = maskHighOrder(k, bits);
161
162
// set the highest bit
163
byte msbMaskOn = (byte) (1 << (highBits - 1));
164
k[lastByteIndex] |= msbMaskOn;
165
166
// round down to a multiple of the cofactor
167
byte lsbMaskOff = (byte) (0xFF << logCofactor);
168
k[0] &= lsbMaskOff;
169
}
170
171
private void pruneK(byte[] k) {
172
pruneK(k, params.getBits(), params.getLogCofactor());
173
}
174
175
private ImmutableIntegerModuloP decodeU(byte [] u) {
176
return decodeU(u, params.getBits());
177
}
178
179
// Constant-time conditional swap
180
private static void cswap(int swap, MutableIntegerModuloP x1,
181
MutableIntegerModuloP x2) {
182
183
x1.conditionalSwapWith(x2, swap);
184
}
185
186
private static IntegerFieldModuloP getIntegerFieldModulo(BigInteger p) {
187
188
if (p.equals(IntegerPolynomial25519.MODULUS)) {
189
return new IntegerPolynomial25519();
190
}
191
else if (p.equals(IntegerPolynomial448.MODULUS)) {
192
return new IntegerPolynomial448();
193
}
194
195
throw new ProviderException("Unsupported prime: " + p.toString());
196
}
197
198
private int bitAt(byte[] arr, int index) {
199
int byteIndex = index / 8;
200
int bitIndex = index % 8;
201
return (arr[byteIndex] & (1 << bitIndex)) >> bitIndex;
202
}
203
204
/*
205
* Constant-time Montgomery ladder that computes k*u and returns the
206
* result as a field element.
207
*/
208
private IntegerModuloP pointMultiply(byte[] k,
209
ImmutableIntegerModuloP u) {
210
211
ImmutableIntegerModuloP x_1 = u;
212
MutableIntegerModuloP x_2 = this.one.mutable();
213
MutableIntegerModuloP z_2 = this.zero.mutable();
214
MutableIntegerModuloP x_3 = u.mutable();
215
MutableIntegerModuloP z_3 = this.one.mutable();
216
int swap = 0;
217
218
// Variables below are reused to avoid unnecessary allocation
219
// They will be assigned in the loop, so initial value doesn't matter
220
MutableIntegerModuloP m1 = this.zero.mutable();
221
MutableIntegerModuloP DA = this.zero.mutable();
222
MutableIntegerModuloP E = this.zero.mutable();
223
MutableIntegerModuloP a24_times_E = this.zero.mutable();
224
225
// Comments describe the equivalent operations from RFC 7748
226
// In comments, A(m1) means the variable m1 holds the value A
227
for (int t = params.getBits() - 1; t >= 0; t--) {
228
int k_t = bitAt(k, t);
229
swap = swap ^ k_t;
230
cswap(swap, x_2, x_3);
231
cswap(swap, z_2, z_3);
232
swap = k_t;
233
234
// A(m1) = x_2 + z_2
235
m1.setValue(x_2).setSum(z_2);
236
// D = x_3 - z_3
237
// DA = D * A(m1)
238
DA.setValue(x_3).setDifference(z_3).setProduct(m1);
239
// AA(m1) = A(m1)^2
240
m1.setSquare();
241
// B(x_2) = x_2 - z_2
242
x_2.setDifference(z_2);
243
// C = x_3 + z_3
244
// CB(x_3) = C * B(x_2)
245
x_3.setSum(z_3).setProduct(x_2);
246
// BB(x_2) = B^2
247
x_2.setSquare();
248
// E = AA(m1) - BB(x_2)
249
E.setValue(m1).setDifference(x_2);
250
// compute a24 * E using SmallValue
251
a24_times_E.setValue(E);
252
a24_times_E.setProduct(this.a24);
253
254
// assign results to x_3, z_3, x_2, z_2
255
// x_2 = AA(m1) * BB
256
x_2.setProduct(m1);
257
// z_2 = E * (AA(m1) + a24 * E)
258
z_2.setValue(m1).setSum(a24_times_E).setProduct(E);
259
// z_3 = x_1*(DA - CB(x_3))^2
260
z_3.setValue(DA).setDifference(x_3).setSquare().setProduct(x_1);
261
// x_3 = (CB(x_3) + DA)^2
262
x_3.setSum(DA).setSquare();
263
}
264
265
cswap(swap, x_2, x_3);
266
cswap(swap, z_2, z_3);
267
268
// return (x_2 * z_2^(p - 2))
269
return x_2.setProduct(z_2.multiplicativeInverse());
270
}
271
}
272
273