Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/test/hotspot/jtreg/compiler/c2/PolynomialRoot.java
41149 views
1
/*
2
* (C) Vladislav Malyshkin 2010
3
* This file is under GPL version 3.
4
*
5
*/
6
7
/** Polynomial root.
8
* @version $Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $
9
* @author Vladislav Malyshkin [email protected]
10
*/
11
12
/**
13
* @test
14
* @key randomness
15
* @bug 8005956
16
* @summary C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block
17
* @library /test/lib
18
* @modules java.base/jdk.internal.misc
19
* java.management
20
*
21
* @run main/timeout=300 compiler.c2.PolynomialRoot
22
*/
23
24
package compiler.c2;
25
26
import jdk.test.lib.Utils;
27
28
import java.util.Arrays;
29
import java.util.Random;
30
31
public class PolynomialRoot {
32
33
34
public static int findPolynomialRoots(final int n,
35
final double [] p,
36
final double [] re_root,
37
final double [] im_root)
38
{
39
if(n==4)
40
{
41
return root4(p,re_root,im_root);
42
}
43
else if(n==3)
44
{
45
return root3(p,re_root,im_root);
46
}
47
else if(n==2)
48
{
49
return root2(p,re_root,im_root);
50
}
51
else if(n==1)
52
{
53
return root1(p,re_root,im_root);
54
}
55
else
56
{
57
throw new RuntimeException("n="+n+" is not supported yet");
58
}
59
}
60
61
62
63
static final double SQRT3=Math.sqrt(3.0),SQRT2=Math.sqrt(2.0);
64
65
66
private static final boolean PRINT_DEBUG=false;
67
68
public static int root4(final double [] p,final double [] re_root,final double [] im_root)
69
{
70
if (PRINT_DEBUG) { System.err.println("=====================root4:p=" + Arrays.toString(p)); }
71
final double vs=p[4];
72
if(PRINT_DEBUG) System.err.println("p[4]="+p[4]);
73
if(!(Math.abs(vs)>EPS))
74
{
75
re_root[0]=re_root[1]=re_root[2]=re_root[3]=
76
im_root[0]=im_root[1]=im_root[2]=im_root[3]=Double.NaN;
77
return -1;
78
}
79
80
/* zsolve_quartic.c - finds the complex roots of
81
* x^4 + a x^3 + b x^2 + c x + d = 0
82
*/
83
final double a=p[3]/vs,b=p[2]/vs,c=p[1]/vs,d=p[0]/vs;
84
if(PRINT_DEBUG) System.err.println("input a="+a+" b="+b+" c="+c+" d="+d);
85
86
87
final double r4 = 1.0 / 4.0;
88
final double q2 = 1.0 / 2.0, q4 = 1.0 / 4.0, q8 = 1.0 / 8.0;
89
final double q1 = 3.0 / 8.0, q3 = 3.0 / 16.0;
90
final int mt;
91
92
/* Deal easily with the cases where the quartic is degenerate. The
93
* ordering of solutions is done explicitly. */
94
if (0 == b && 0 == c)
95
{
96
if (0 == d)
97
{
98
re_root[0]=-a;
99
im_root[0]=im_root[1]=im_root[2]=im_root[3]=0;
100
re_root[1]=re_root[2]=re_root[3]=0;
101
return 4;
102
}
103
else if (0 == a)
104
{
105
if (d > 0)
106
{
107
final double sq4 = Math.sqrt(Math.sqrt(d));
108
re_root[0]=sq4*SQRT2/2;
109
im_root[0]=re_root[0];
110
re_root[1]=-re_root[0];
111
im_root[1]=re_root[0];
112
re_root[2]=-re_root[0];
113
im_root[2]=-re_root[0];
114
re_root[3]=re_root[0];
115
im_root[3]=-re_root[0];
116
if(PRINT_DEBUG) System.err.println("Path a=0 d>0");
117
}
118
else
119
{
120
final double sq4 = Math.sqrt(Math.sqrt(-d));
121
re_root[0]=sq4;
122
im_root[0]=0;
123
re_root[1]=0;
124
im_root[1]=sq4;
125
re_root[2]=0;
126
im_root[2]=-sq4;
127
re_root[3]=-sq4;
128
im_root[3]=0;
129
if(PRINT_DEBUG) System.err.println("Path a=0 d<0");
130
}
131
return 4;
132
}
133
}
134
135
if (0.0 == c && 0.0 == d)
136
{
137
root2(new double []{p[2],p[3],p[4]},re_root,im_root);
138
re_root[2]=im_root[2]=re_root[3]=im_root[3]=0;
139
return 4;
140
}
141
142
if(PRINT_DEBUG) System.err.println("G Path c="+c+" d="+d);
143
final double [] u=new double[3];
144
145
if(PRINT_DEBUG) System.err.println("Generic Path");
146
/* For non-degenerate solutions, proceed by constructing and
147
* solving the resolvent cubic */
148
final double aa = a * a;
149
final double pp = b - q1 * aa;
150
final double qq = c - q2 * a * (b - q4 * aa);
151
final double rr = d - q4 * a * (c - q4 * a * (b - q3 * aa));
152
final double rc = q2 * pp , rc3 = rc / 3;
153
final double sc = q4 * (q4 * pp * pp - rr);
154
final double tc = -(q8 * qq * q8 * qq);
155
if(PRINT_DEBUG) System.err.println("aa="+aa+" pp="+pp+" qq="+qq+" rr="+rr+" rc="+rc+" sc="+sc+" tc="+tc);
156
final boolean flag_realroots;
157
158
/* This code solves the resolvent cubic in a convenient fashion
159
* for this implementation of the quartic. If there are three real
160
* roots, then they are placed directly into u[]. If two are
161
* complex, then the real root is put into u[0] and the real
162
* and imaginary part of the complex roots are placed into
163
* u[1] and u[2], respectively. */
164
{
165
final double qcub = (rc * rc - 3 * sc);
166
final double rcub = (rc*(2 * rc * rc - 9 * sc) + 27 * tc);
167
168
final double Q = qcub / 9;
169
final double R = rcub / 54;
170
171
final double Q3 = Q * Q * Q;
172
final double R2 = R * R;
173
174
final double CR2 = 729 * rcub * rcub;
175
final double CQ3 = 2916 * qcub * qcub * qcub;
176
177
if(PRINT_DEBUG) System.err.println("CR2="+CR2+" CQ3="+CQ3+" R="+R+" Q="+Q);
178
179
if (0 == R && 0 == Q)
180
{
181
flag_realroots=true;
182
u[0] = -rc3;
183
u[1] = -rc3;
184
u[2] = -rc3;
185
}
186
else if (CR2 == CQ3)
187
{
188
flag_realroots=true;
189
final double sqrtQ = Math.sqrt (Q);
190
if (R > 0)
191
{
192
u[0] = -2 * sqrtQ - rc3;
193
u[1] = sqrtQ - rc3;
194
u[2] = sqrtQ - rc3;
195
}
196
else
197
{
198
u[0] = -sqrtQ - rc3;
199
u[1] = -sqrtQ - rc3;
200
u[2] = 2 * sqrtQ - rc3;
201
}
202
}
203
else if (R2 < Q3)
204
{
205
flag_realroots=true;
206
final double ratio = (R >= 0?1:-1) * Math.sqrt (R2 / Q3);
207
final double theta = Math.acos (ratio);
208
final double norm = -2 * Math.sqrt (Q);
209
210
u[0] = norm * Math.cos (theta / 3) - rc3;
211
u[1] = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - rc3;
212
u[2] = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - rc3;
213
}
214
else
215
{
216
flag_realroots=false;
217
final double A = -(R >= 0?1:-1)*Math.pow(Math.abs(R)+Math.sqrt(R2-Q3),1.0/3.0);
218
final double B = Q / A;
219
220
u[0] = A + B - rc3;
221
u[1] = -0.5 * (A + B) - rc3;
222
u[2] = -(SQRT3*0.5) * Math.abs (A - B);
223
}
224
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+" u[1]="+u[1]+" u[2]="+u[2]+" qq="+qq+" disc="+((CR2 - CQ3) / 2125764.0));
225
}
226
/* End of solution to resolvent cubic */
227
228
/* Combine the square roots of the roots of the cubic
229
* resolvent appropriately. Also, calculate 'mt' which
230
* designates the nature of the roots:
231
* mt=1 : 4 real roots
232
* mt=2 : 0 real roots
233
* mt=3 : 2 real roots
234
*/
235
236
237
final double w1_re,w1_im,w2_re,w2_im,w3_re,w3_im,mod_w1w2,mod_w1w2_squared;
238
if (flag_realroots)
239
{
240
mod_w1w2=-1;
241
mt = 2;
242
int jmin=0;
243
double vmin=Math.abs(u[jmin]);
244
for(int j=1;j<3;j++)
245
{
246
final double vx=Math.abs(u[j]);
247
if(vx<vmin)
248
{
249
vmin=vx;
250
jmin=j;
251
}
252
}
253
final double u1=u[(jmin+1)%3],u2=u[(jmin+2)%3];
254
mod_w1w2_squared=Math.abs(u1*u2);
255
if(u1>=0)
256
{
257
w1_re=Math.sqrt(u1);
258
w1_im=0;
259
}
260
else
261
{
262
w1_re=0;
263
w1_im=Math.sqrt(-u1);
264
}
265
if(u2>=0)
266
{
267
w2_re=Math.sqrt(u2);
268
w2_im=0;
269
}
270
else
271
{
272
w2_re=0;
273
w2_im=Math.sqrt(-u2);
274
}
275
if(PRINT_DEBUG) System.err.println("u1="+u1+" u2="+u2+" jmin="+jmin);
276
}
277
else
278
{
279
mt = 3;
280
final double w_mod2_sq=u[1]*u[1]+u[2]*u[2],w_mod2=Math.sqrt(w_mod2_sq),w_mod=Math.sqrt(w_mod2);
281
if(w_mod2_sq<=0)
282
{
283
w1_re=w1_im=0;
284
}
285
else
286
{
287
// calculate square root of a complex number (u[1],u[2])
288
// the result is in the (w1_re,w1_im)
289
final double absu1=Math.abs(u[1]),absu2=Math.abs(u[2]),w;
290
if(absu1>=absu2)
291
{
292
final double t=absu2/absu1;
293
w=Math.sqrt(absu1*0.5 * (1.0 + Math.sqrt(1.0 + t * t)));
294
if(PRINT_DEBUG) System.err.println(" Path1 ");
295
}
296
else
297
{
298
final double t=absu1/absu2;
299
w=Math.sqrt(absu2*0.5 * (t + Math.sqrt(1.0 + t * t)));
300
if(PRINT_DEBUG) System.err.println(" Path1a ");
301
}
302
if(u[1]>=0)
303
{
304
w1_re=w;
305
w1_im=u[2]/(2*w);
306
if(PRINT_DEBUG) System.err.println(" Path2 ");
307
}
308
else
309
{
310
final double vi = (u[2] >= 0) ? w : -w;
311
w1_re=u[2]/(2*vi);
312
w1_im=vi;
313
if(PRINT_DEBUG) System.err.println(" Path2a ");
314
}
315
}
316
final double absu0=Math.abs(u[0]);
317
if(w_mod2>=absu0)
318
{
319
mod_w1w2=w_mod2;
320
mod_w1w2_squared=w_mod2_sq;
321
w2_re=w1_re;
322
w2_im=-w1_im;
323
}
324
else
325
{
326
mod_w1w2=-1;
327
mod_w1w2_squared=w_mod2*absu0;
328
if(u[0]>=0)
329
{
330
w2_re=Math.sqrt(absu0);
331
w2_im=0;
332
}
333
else
334
{
335
w2_re=0;
336
w2_im=Math.sqrt(absu0);
337
}
338
}
339
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+"u[1]="+u[1]+" u[2]="+u[2]+" absu0="+absu0+" w_mod="+w_mod+" w_mod2="+w_mod2);
340
}
341
342
/* Solve the quadratic in order to obtain the roots
343
* to the quartic */
344
if(mod_w1w2>0)
345
{
346
// a shorcut to reduce rounding error
347
w3_re=qq/(-8)/mod_w1w2;
348
w3_im=0;
349
}
350
else if(mod_w1w2_squared>0)
351
{
352
// regular path
353
final double mqq8n=qq/(-8)/mod_w1w2_squared;
354
w3_re=mqq8n*(w1_re*w2_re-w1_im*w2_im);
355
w3_im=-mqq8n*(w1_re*w2_im+w2_re*w1_im);
356
}
357
else
358
{
359
// typically occur when qq==0
360
w3_re=w3_im=0;
361
}
362
363
final double h = r4 * a;
364
if(PRINT_DEBUG) System.err.println("w1_re="+w1_re+" w1_im="+w1_im+" w2_re="+w2_re+" w2_im="+w2_im+" w3_re="+w3_re+" w3_im="+w3_im+" h="+h);
365
366
re_root[0]=w1_re+w2_re+w3_re-h;
367
im_root[0]=w1_im+w2_im+w3_im;
368
re_root[1]=-(w1_re+w2_re)+w3_re-h;
369
im_root[1]=-(w1_im+w2_im)+w3_im;
370
re_root[2]=w2_re-w1_re-w3_re-h;
371
im_root[2]=w2_im-w1_im-w3_im;
372
re_root[3]=w1_re-w2_re-w3_re-h;
373
im_root[3]=w1_im-w2_im-w3_im;
374
375
return 4;
376
}
377
378
379
380
static void setRandomP(final double [] p, final int n, Random r)
381
{
382
if(r.nextDouble()<0.1)
383
{
384
// integer coefficiens
385
for(int j=0;j<p.length;j++)
386
{
387
if(j<=n)
388
{
389
p[j]=(r.nextInt(2)<=0?-1:1)*r.nextInt(10);
390
}
391
else
392
{
393
p[j]=0;
394
}
395
}
396
}
397
else
398
{
399
// real coefficiens
400
for(int j=0;j<p.length;j++)
401
{
402
if(j<=n)
403
{
404
p[j]=-1+2*r.nextDouble();
405
}
406
else
407
{
408
p[j]=0;
409
}
410
}
411
}
412
if(Math.abs(p[n])<1e-2)
413
{
414
p[n]=(r.nextInt(2)<=0?-1:1)*(0.1+r.nextDouble());
415
}
416
}
417
418
419
static void checkValues(final double [] p,
420
final int n,
421
final double rex,
422
final double imx,
423
final double eps,
424
final String txt)
425
{
426
double res=0,ims=0,sabs=0;
427
final double xabs=Math.abs(rex)+Math.abs(imx);
428
for(int k=n;k>=0;k--)
429
{
430
final double res1=(res*rex-ims*imx)+p[k];
431
final double ims1=(ims*rex+res*imx);
432
res=res1;
433
ims=ims1;
434
sabs+=xabs*sabs+p[k];
435
}
436
sabs=Math.abs(sabs);
437
if(false && sabs>1/eps?
438
(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))
439
:
440
(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps)))
441
{
442
throw new RuntimeException(
443
getPolinomTXT(p)+"\n"+
444
"\t x.r="+rex+" x.i="+imx+"\n"+
445
"res/sabs="+(res/sabs)+" ims/sabs="+(ims/sabs)+
446
" sabs="+sabs+
447
"\nres="+res+" ims="+ims+" n="+n+" eps="+eps+" "+
448
" sabs>1/eps="+(sabs>1/eps)+
449
" f1="+(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))+
450
" f2="+(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))+
451
" "+txt);
452
}
453
}
454
455
static String getPolinomTXT(final double [] p)
456
{
457
final StringBuilder buf=new StringBuilder();
458
buf.append("order="+(p.length-1)+"\t");
459
for(int k=0;k<p.length;k++)
460
{
461
buf.append("p["+k+"]="+p[k]+";");
462
}
463
return buf.toString();
464
}
465
466
static String getRootsTXT(int nr,final double [] re,final double [] im)
467
{
468
final StringBuilder buf=new StringBuilder();
469
for(int k=0;k<nr;k++)
470
{
471
buf.append("x."+k+"("+re[k]+","+im[k]+")\n");
472
}
473
return buf.toString();
474
}
475
476
static void testRoots(final int n,
477
final int n_tests,
478
final Random rn,
479
final double eps)
480
{
481
final double [] p=new double [n+1];
482
final double [] rex=new double [n],imx=new double [n];
483
for(int i=0;i<n_tests;i++)
484
{
485
for(int dg=n;dg-->-1;)
486
{
487
for(int dr=3;dr-->0;)
488
{
489
setRandomP(p,n,rn);
490
for(int j=0;j<=dg;j++)
491
{
492
p[j]=0;
493
}
494
if(dr==0)
495
{
496
p[0]=-1+2.0*rn.nextDouble();
497
}
498
else if(dr==1)
499
{
500
p[0]=p[1]=0;
501
}
502
503
findPolynomialRoots(n,p,rex,imx);
504
505
for(int j=0;j<n;j++)
506
{
507
//System.err.println("j="+j);
508
checkValues(p,n,rex[j],imx[j],eps," t="+i);
509
}
510
}
511
}
512
}
513
System.err.println("testRoots(): n_tests="+n_tests+" OK, dim="+n);
514
}
515
516
517
518
519
static final double EPS=0;
520
521
public static int root1(final double [] p,final double [] re_root,final double [] im_root)
522
{
523
if(!(Math.abs(p[1])>EPS))
524
{
525
re_root[0]=im_root[0]=Double.NaN;
526
return -1;
527
}
528
re_root[0]=-p[0]/p[1];
529
im_root[0]=0;
530
return 1;
531
}
532
533
public static int root2(final double [] p,final double [] re_root,final double [] im_root)
534
{
535
if(!(Math.abs(p[2])>EPS))
536
{
537
re_root[0]=re_root[1]=im_root[0]=im_root[1]=Double.NaN;
538
return -1;
539
}
540
final double b2=0.5*(p[1]/p[2]),c=p[0]/p[2],d=b2*b2-c;
541
if(d>=0)
542
{
543
final double sq=Math.sqrt(d);
544
if(b2<0)
545
{
546
re_root[1]=-b2+sq;
547
re_root[0]=c/re_root[1];
548
}
549
else if(b2>0)
550
{
551
re_root[0]=-b2-sq;
552
re_root[1]=c/re_root[0];
553
}
554
else
555
{
556
re_root[0]=-b2-sq;
557
re_root[1]=-b2+sq;
558
}
559
im_root[0]=im_root[1]=0;
560
}
561
else
562
{
563
final double sq=Math.sqrt(-d);
564
re_root[0]=re_root[1]=-b2;
565
im_root[0]=sq;
566
im_root[1]=-sq;
567
}
568
return 2;
569
}
570
571
public static int root3(final double [] p,final double [] re_root,final double [] im_root)
572
{
573
final double vs=p[3];
574
if(!(Math.abs(vs)>EPS))
575
{
576
re_root[0]=re_root[1]=re_root[2]=
577
im_root[0]=im_root[1]=im_root[2]=Double.NaN;
578
return -1;
579
}
580
final double a=p[2]/vs,b=p[1]/vs,c=p[0]/vs;
581
/* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0
582
*/
583
final double q = (a * a - 3 * b);
584
final double r = (a*(2 * a * a - 9 * b) + 27 * c);
585
586
final double Q = q / 9;
587
final double R = r / 54;
588
589
final double Q3 = Q * Q * Q;
590
final double R2 = R * R;
591
592
final double CR2 = 729 * r * r;
593
final double CQ3 = 2916 * q * q * q;
594
final double a3=a/3;
595
596
if (R == 0 && Q == 0)
597
{
598
re_root[0]=re_root[1]=re_root[2]=-a3;
599
im_root[0]=im_root[1]=im_root[2]=0;
600
return 3;
601
}
602
else if (CR2 == CQ3)
603
{
604
/* this test is actually R2 == Q3, written in a form suitable
605
for exact computation with integers */
606
607
/* Due to finite precision some double roots may be missed, and
608
will be considered to be a pair of complex roots z = x +/-
609
epsilon i close to the real axis. */
610
611
final double sqrtQ = Math.sqrt (Q);
612
613
if (R > 0)
614
{
615
re_root[0] = -2 * sqrtQ - a3;
616
re_root[1]=re_root[2]=sqrtQ - a3;
617
im_root[0]=im_root[1]=im_root[2]=0;
618
}
619
else
620
{
621
re_root[0]=re_root[1] = -sqrtQ - a3;
622
re_root[2]=2 * sqrtQ - a3;
623
im_root[0]=im_root[1]=im_root[2]=0;
624
}
625
return 3;
626
}
627
else if (R2 < Q3)
628
{
629
final double sgnR = (R >= 0 ? 1 : -1);
630
final double ratio = sgnR * Math.sqrt (R2 / Q3);
631
final double theta = Math.acos (ratio);
632
final double norm = -2 * Math.sqrt (Q);
633
final double r0 = norm * Math.cos (theta/3) - a3;
634
final double r1 = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - a3;
635
final double r2 = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - a3;
636
637
re_root[0]=r0;
638
re_root[1]=r1;
639
re_root[2]=r2;
640
im_root[0]=im_root[1]=im_root[2]=0;
641
return 3;
642
}
643
else
644
{
645
final double sgnR = (R >= 0 ? 1 : -1);
646
final double A = -sgnR * Math.pow (Math.abs (R) + Math.sqrt (R2 - Q3), 1.0 / 3.0);
647
final double B = Q / A;
648
649
re_root[0]=A + B - a3;
650
im_root[0]=0;
651
re_root[1]=-0.5 * (A + B) - a3;
652
im_root[1]=-(SQRT3*0.5) * Math.abs(A - B);
653
re_root[2]=re_root[1];
654
im_root[2]=-im_root[1];
655
return 3;
656
}
657
658
}
659
660
661
static void root3a(final double [] p,final double [] re_root,final double [] im_root)
662
{
663
if(Math.abs(p[3])>EPS)
664
{
665
final double v=p[3],
666
a=p[2]/v,b=p[1]/v,c=p[0]/v,
667
a3=a/3,a3a=a3*a,
668
pd3=(b-a3a)/3,
669
qd2=a3*(a3a/3-0.5*b)+0.5*c,
670
Q=pd3*pd3*pd3+qd2*qd2;
671
if(Q<0)
672
{
673
// three real roots
674
final double SQ=Math.sqrt(-Q);
675
final double th=Math.atan2(SQ,-qd2);
676
im_root[0]=im_root[1]=im_root[2]=0;
677
final double f=2*Math.sqrt(-pd3);
678
re_root[0]=f*Math.cos(th/3)-a3;
679
re_root[1]=f*Math.cos((th+2*Math.PI)/3)-a3;
680
re_root[2]=f*Math.cos((th+4*Math.PI)/3)-a3;
681
//System.err.println("3r");
682
}
683
else
684
{
685
// one real & two complex roots
686
final double SQ=Math.sqrt(Q);
687
final double r1=-qd2+SQ,r2=-qd2-SQ;
688
final double v1=Math.signum(r1)*Math.pow(Math.abs(r1),1.0/3),
689
v2=Math.signum(r2)*Math.pow(Math.abs(r2),1.0/3),
690
sv=v1+v2;
691
// real root
692
re_root[0]=sv-a3;
693
im_root[0]=0;
694
// complex roots
695
re_root[1]=re_root[2]=-0.5*sv-a3;
696
im_root[1]=(v1-v2)*(SQRT3*0.5);
697
im_root[2]=-im_root[1];
698
//System.err.println("1r2c");
699
}
700
}
701
else
702
{
703
re_root[0]=re_root[1]=re_root[2]=im_root[0]=im_root[1]=im_root[2]=Double.NaN;
704
}
705
}
706
707
708
static void printSpecialValues()
709
{
710
for(int st=0;st<6;st++)
711
{
712
//final double [] p=new double []{8,1,3,3.6,1};
713
final double [] re_root=new double [4],im_root=new double [4];
714
final double [] p;
715
final int n;
716
if(st<=3)
717
{
718
if(st<=0)
719
{
720
p=new double []{2,-4,6,-4,1};
721
//p=new double []{-6,6,-6,8,-2};
722
}
723
else if(st==1)
724
{
725
p=new double []{0,-4,8,3,-9};
726
}
727
else if(st==2)
728
{
729
p=new double []{-1,0,2,0,-1};
730
}
731
else
732
{
733
p=new double []{-5,2,8,-2,-3};
734
}
735
root4(p,re_root,im_root);
736
n=4;
737
}
738
else
739
{
740
p=new double []{0,2,0,1};
741
if(st==4)
742
{
743
p[1]=-p[1];
744
}
745
root3(p,re_root,im_root);
746
n=3;
747
}
748
System.err.println("======== n="+n);
749
for(int i=0;i<=n;i++)
750
{
751
if(i<n)
752
{
753
System.err.println(String.valueOf(i)+"\t"+
754
p[i]+"\t"+
755
re_root[i]+"\t"+
756
im_root[i]);
757
}
758
else
759
{
760
System.err.println(String.valueOf(i)+"\t"+p[i]+"\t");
761
}
762
}
763
}
764
}
765
766
767
768
public static void main(final String [] args)
769
{
770
if (System.getProperty("os.arch").equals("x86") ||
771
System.getProperty("os.arch").equals("amd64") ||
772
System.getProperty("os.arch").equals("x86_64")){
773
final long t0=System.currentTimeMillis();
774
final double eps=1e-6;
775
//checkRoots();
776
final Random r = Utils.getRandomInstance();
777
printSpecialValues();
778
779
final int n_tests=100000;
780
//testRoots(2,n_tests,r,eps);
781
//testRoots(3,n_tests,r,eps);
782
testRoots(4,n_tests,r,eps);
783
final long t1=System.currentTimeMillis();
784
System.err.println("PolynomialRoot.main: "+n_tests+" tests OK done in "+(t1-t0)+" milliseconds. ver=$Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $");
785
System.out.println("PASSED");
786
} else {
787
System.out.println("PASS test for non-x86");
788
}
789
}
790
791
792
793
}
794
795