Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/test/jdk/java/lang/Math/Expm1Tests.java
41149 views
1
/*
2
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
/*
25
* @test
26
* @bug 4851638 4900189 4939441
27
* @summary Tests for {Math, StrictMath}.expm1
28
* @author Joseph D. Darcy
29
*/
30
31
/*
32
* The Taylor expansion of expxm1(x) = exp(x) -1 is
33
*
34
* 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
35
*
36
* x + x^2/2! + x^3/3 + ...
37
*
38
* Therefore, for small values of x, expxm1 ~= x.
39
*
40
* For large values of x, expxm1(x) ~= exp(x)
41
*
42
* For large negative x, expxm1(x) ~= -1.
43
*/
44
45
public class Expm1Tests {
46
47
private Expm1Tests(){}
48
49
static final double infinityD = Double.POSITIVE_INFINITY;
50
static final double NaNd = Double.NaN;
51
52
static int testExpm1() {
53
int failures = 0;
54
55
double [][] testCases = {
56
{Double.NaN, NaNd},
57
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
58
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
59
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
60
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
61
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
62
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
63
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
64
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
65
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
66
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
67
{infinityD, infinityD},
68
{-infinityD, -1.0},
69
{-0.0, -0.0},
70
{+0.0, +0.0},
71
};
72
73
// Test special cases
74
for(int i = 0; i < testCases.length; i++) {
75
failures += testExpm1CaseWithUlpDiff(testCases[i][0],
76
testCases[i][1], 0, null);
77
}
78
79
80
// For |x| < 2^-54 expm1(x) ~= x
81
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
82
double d = Math.scalb(2, i);
83
failures += testExpm1Case(d, d);
84
failures += testExpm1Case(-d, -d);
85
}
86
87
88
// For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
89
// The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
90
// overflows for x > ~= 709.8
91
92
// Use a 2-ulp error threshold to account for errors in the
93
// exp implementation; the increments of d in the loop will be
94
// exact.
95
for(double d = 37.5; d <= 709.5; d += 1.0) {
96
failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
97
}
98
99
// For x > 710, expm1(x) should be infinity
100
for(int i = 10; i <= Double.MAX_EXPONENT; i++) {
101
double d = Math.scalb(2, i);
102
failures += testExpm1Case(d, infinityD);
103
}
104
105
// By monotonicity, once the limit is reached, the
106
// implemenation should return the limit for all smaller
107
// values.
108
boolean reachedLimit [] = {false, false};
109
110
// Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
111
// The greatest such y is ln(2^-53) ~= -36.7368005696771.
112
for(double d = -36.75; d >= -127.75; d -= 1.0) {
113
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
114
reachedLimit);
115
}
116
117
for(int i = 7; i <= Double.MAX_EXPONENT; i++) {
118
double d = -Math.scalb(2, i);
119
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
120
}
121
122
// Test for monotonicity failures near multiples of log(2).
123
// Test two numbers before and two numbers after each chosen
124
// value; i.e.
125
//
126
// pcNeighbors[] =
127
// {nextDown(nextDown(pc)),
128
// nextDown(pc),
129
// pc,
130
// nextUp(pc),
131
// nextUp(nextUp(pc))}
132
//
133
// and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
134
{
135
double pcNeighbors[] = new double[5];
136
double pcNeighborsExpm1[] = new double[5];
137
double pcNeighborsStrictExpm1[] = new double[5];
138
139
for(int i = -50; i <= 50; i++) {
140
double pc = StrictMath.log(2)*i;
141
142
pcNeighbors[2] = pc;
143
pcNeighbors[1] = Math.nextDown(pc);
144
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
145
pcNeighbors[3] = Math.nextUp(pc);
146
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
147
148
for(int j = 0; j < pcNeighbors.length; j++) {
149
pcNeighborsExpm1[j] = Math.expm1(pcNeighbors[j]);
150
pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
151
}
152
153
for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
154
if(pcNeighborsExpm1[j] > pcNeighborsExpm1[j+1] ) {
155
failures++;
156
System.err.println("Monotonicity failure for Math.expm1 on " +
157
pcNeighbors[j] + " and " +
158
pcNeighbors[j+1] + "\n\treturned " +
159
pcNeighborsExpm1[j] + " and " +
160
pcNeighborsExpm1[j+1] );
161
}
162
163
if(pcNeighborsStrictExpm1[j] > pcNeighborsStrictExpm1[j+1] ) {
164
failures++;
165
System.err.println("Monotonicity failure for StrictMath.expm1 on " +
166
pcNeighbors[j] + " and " +
167
pcNeighbors[j+1] + "\n\treturned " +
168
pcNeighborsStrictExpm1[j] + " and " +
169
pcNeighborsStrictExpm1[j+1] );
170
}
171
172
173
}
174
175
}
176
}
177
178
return failures;
179
}
180
181
public static int testExpm1Case(double input,
182
double expected) {
183
return testExpm1CaseWithUlpDiff(input, expected, 1, null);
184
}
185
186
public static int testExpm1CaseWithUlpDiff(double input,
187
double expected,
188
double ulps,
189
boolean [] reachedLimit) {
190
int failures = 0;
191
double mathUlps = ulps, strictUlps = ulps;
192
double mathOutput;
193
double strictOutput;
194
195
if (reachedLimit != null) {
196
if (reachedLimit[0])
197
mathUlps = 0;
198
199
if (reachedLimit[1])
200
strictUlps = 0;
201
}
202
203
failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
204
input, mathOutput=Math.expm1(input),
205
expected, mathUlps, -1.0);
206
failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
207
input, strictOutput=StrictMath.expm1(input),
208
expected, strictUlps, -1.0);
209
if (reachedLimit != null) {
210
reachedLimit[0] |= (mathOutput == -1.0);
211
reachedLimit[1] |= (strictOutput == -1.0);
212
}
213
214
return failures;
215
}
216
217
public static void main(String argv[]) {
218
int failures = 0;
219
220
failures += testExpm1();
221
222
if (failures > 0) {
223
System.err.println("Testing expm1 incurred "
224
+ failures + " failures.");
225
throw new RuntimeException();
226
}
227
}
228
}
229
230