Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/test/jdk/java/lang/Math/WorstCaseTests.java
41152 views
1
/*
2
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
/*
25
* @test
26
* @bug 4900206
27
* @summary Test worst case behavior of exp, log, sin, cos, etc.
28
* @build Tests
29
* @build WorstCaseTests
30
* @run main WorstCaseTests
31
* @run main/othervm -Xcomp WorstCaseTests
32
* @author Joseph D. Darcy
33
*/
34
35
/**
36
* Use "Table Maker's Dilemma" results from Jean-Michel Muller and
37
* Vincent Lefèvre, to test the math library. See
38
* http://perso.ens-lyon.fr/jean-michel.muller/TMD.html for original
39
* test vectors from 2000 and see
40
* http://perso.ens-lyon.fr/jean-michel.muller/TMDworstcases.pdf with
41
* additional test vectors from 2003. The latter link also contains
42
* some information about the methodology used to produce the test
43
* vectors.
44
*
45
* Most of the Java math library methods tested here have a 1-ulp
46
* error bound from their specifications. This implies the returned
47
* value must be one of the two representable floating-point numbers
48
* bracketing the exact result. The expected value in the test
49
* vectors below is the truncation of the exact value. Therefore, the
50
* computed result must either be that value or the value next larger
51
* in magnitude. The hyperbolic transcendental functions sinh and cosh
52
* have a larger 2.5 ulp error bound in their specification, but the
53
* JDK implementation complies with a 1 ulp bound on the worst-case
54
* values. Therefore, no addition leeway is afforded when testing
55
* sinh and cosh.
56
*/
57
public class WorstCaseTests {
58
private WorstCaseTests() {throw new AssertionError("No instances for you.");}
59
60
public static void main(String... args) {
61
int failures = 0;
62
63
failures += testWorstExp();
64
failures += testWorstLog();
65
failures += testWorstSin();
66
failures += testWorstAsin();
67
failures += testWorstCos();
68
failures += testWorstAcos();
69
failures += testWorstTan();
70
failures += testWorstAtan();
71
failures += testWorstPow2();
72
failures += testWorstSinh();
73
failures += testWorstCosh();
74
75
if (failures > 0) {
76
System.err.printf("Testing worst cases incurred %d failures.%n", failures);
77
throw new RuntimeException();
78
}
79
}
80
81
private static int testWorstExp() {
82
int failures = 0;
83
double [][] testCases = {
84
{-0x1.E8BDBFCD9144Ep3, 0x1.F3E558CF4DE54p-23},
85
{-0x1.71E0B869B5E79p2, 0x1.951C6DC5D24E2p-9},
86
{-0x1.02393D5976769p1, 0x1.1064B2C103DDAp-3},
87
{-0x1.2A9CAD9998262p0, 0x1.3EF1E9B3A81C7p-2},
88
{-0x1.CC37EF7DE7501p0, 0x1.534D4DE870713p-3},
89
{-0x1.22E24FA3D5CF9p-1, 0x1.2217147B85EA9p-1},
90
{-0x1.DC2B5DF1F7D3Dp-1, 0x1.9403FD0EE51C8p-2},
91
{-0x1.290EA09E36479p-3, 0x1.BADED30CBF1C3p-1},
92
{-0x1.A2FEFEFD580DFp-13, 0x1.FFE5D0BB7EABFp-1},
93
{-0x1.ED318EFB627EAp-27, 0x1.FFFFFF84B39C4p-1},
94
{-0x1.4BD46601AE1EFp-31, 0x1.FFFFFFFAD0AE6p-1},
95
{-0x1.1000000000242p-42, 0x1.FFFFFFFFFF780p-1},
96
{-0x1.2000000000288p-42, 0x1.FFFFFFFFFF700p-1},
97
{-0x1.8000000000012p-48, 0x1.FFFFFFFFFFFD0p-1},
98
{-0x1.0000000000001p-51, 0x1.FFFFFFFFFFFFCp-1},
99
100
{+0x1.FFFFFFFFFFFFFp-53, 0x1.0000000000000p0},
101
{+0x1.FFFFFFFFFFFE0p-48, 0x1.000000000001Fp0},
102
{+0x1.7FFE7FFEE0024p-32, 0x1.000000017FFE8p0},
103
{+0x1.80017FFEDFFDCp-32, 0x1.0000000180017p0},
104
{+0x1.9E9CBBFD6080Bp-31, 0x1.000000033D397p0},
105
{+0x1.D7A7D893609E5p-26, 0x1.00000075E9F64p0},
106
{+0x1.BA07D73250DE7p-14, 0x1.0006E83736F8Cp0},
107
{+0x1.D77FD13D27FFFp-11, 0x1.003AF6C37C1D3p0},
108
{+0x1.6A4D1AF9CC989p-8, 0x1.016B4DF3299D7p0},
109
{+0x1.ACCFBE46B4EF0p-1, 0x2.4F85C9783DCE0p0},
110
{+0x1.ACA7AE8DA5A7Bp0, 0x5.55F52B35F955Ap0},
111
{+0x1.D6336A88077AAp0, 0x6.46A37FD503FDCp0},
112
{+0x2.85DC78FB8928Cp0, 0xC.76F2496CB038Fp0},
113
{+0x1.76E7E5D7B6EACp3, 0x1.DE7CD6751029Ap16},
114
{+0x1.A8EAD058BC6B8p3, 0x1.1D71965F516ADp19},
115
{+0x1.1D5C2DAEBE367p4, 0x1.A8C02E974C314p25},
116
{+0x1.C44CE0D716A1Ap4, 0x1.B890CA8637AE1p40},
117
};
118
119
for(double[] testCase: testCases) {
120
failures += testExpCase(testCase[0], testCase[1]);
121
}
122
123
return failures;
124
}
125
126
private static int testExpCase(double input, double expected) {
127
int failures = 0;
128
double out = Tests.nextOut(expected);
129
failures += Tests.testBounds("Math.exp", input, Math.exp(input), expected, out);
130
failures += Tests.testBounds("StrictMath.exp", input, StrictMath.exp(input), expected, out);
131
return failures;
132
}
133
134
private static int testWorstLog() {
135
int failures = 0;
136
double [][] testCases = {
137
{+0x1.0000000000001p0, +0x1.FFFFFFFFFFFFFp-53},
138
{+0x2.0012ECB039C9Cp0, +0x1.62F71C4656B60p-1},
139
{+0x6.46A37FD503FDCp0, +0x1.D6336A88077A9p+0},
140
{+0x7.78DFECC7F57Fp0, +0x2.02DD059DB46Bp+0},
141
{+0x9.588CCF24BB9C8p0, +0x2.3C24DEBB2BE7p+0},
142
{+0xA.AF87550D97E4p0, +0x2.5E706595A7ABEp+0},
143
{+0xC.76F2496CB039p0, +0x2.85DC78FB8928Cp+0},
144
{+0x11.1867637CBD03p0, +0x2.D6BBEFC79A842p+0},
145
{+0x13.D9D7D597A9DDp0, +0x2.FCFE12AE07DDCp+0},
146
{+0x17.F3825778AAAFp0, +0x3.2D0F907F5E00Cp+0},
147
{+0x1AC.50B409C8AEEp0, +0x6.0F52F37AECFCCp+0},
148
{+0x1.DE7CD6751029Ap16, +0x1.76E7E5D7B6EABp+3},
149
};
150
151
for(double[] testCase: testCases) {
152
failures += testLogCase(testCase[0], testCase[1]);
153
}
154
155
return failures;
156
}
157
158
private static int testLogCase(double input, double expected) {
159
int failures = 0;
160
double out = Tests.nextOut(expected);
161
failures += Tests.testBounds("Math.log", input, Math.log(input), expected, out);
162
failures += Tests.testBounds("StrictMath.log", input, StrictMath.log(input), expected, out);
163
return failures;
164
}
165
166
private static int testWorstSin() {
167
int failures = 0;
168
double [][] testCases = {
169
{+0x1.E0000000001C2p-20, +0x1.DFFFFFFFFF02Ep-20},
170
{+0x1.598BAE9E632F6p-7, +0x1.598A0AEA48996p-7},
171
172
{+0x1.9283586503FEp-5, +0x1.9259E3708BD39p-5},
173
{+0x1.D7BDCD778049Fp-5, +0x1.D77B117F230D5p-5},
174
{+0x1.A202B3FB84788p-4, +0x1.A1490C8C06BA6p-4},
175
{+0x1.D037CB27EE6DFp-3, +0x1.CC40C3805229Ap-3},
176
{+0x1.D5064E6FE82C5p-3, +0x1.D0EF799001BA9p-3},
177
{+0x1.FE767739D0F6Dp-2, +0x1.E9950730C4695p-2},
178
{+0x1.D98C4C612718Dp-1, +0x1.98DCD09337792p-1},
179
{+0x1.921FB54442D18p-0, +0x1.FFFFFFFFFFFFFp-1},
180
181
{+0x1.6756745770A51p+1, +0x1.4FF350E412821p-2},
182
};
183
184
for(double[] testCase: testCases) {
185
failures += testSinCase(testCase[0], testCase[1]);
186
}
187
188
return failures;
189
}
190
191
private static int testSinCase(double input, double expected) {
192
int failures = 0;
193
double out = Tests.nextOut(expected);
194
failures += Tests.testBounds("Math.sin", input, Math.sin(input), expected, out);
195
failures += Tests.testBounds("StrictMath.sin", input, StrictMath.sin(input), expected, out);
196
return failures;
197
}
198
199
private static int testWorstAsin() {
200
int failures = 0;
201
double [][] testCases = {
202
{+0x1.DFFFFFFFFF02Ep-20, +0x1.E0000000001C1p-20},
203
{+0x1.DFFFFFFFFC0B8p-19, +0x1.E000000000707p-19},
204
205
{+0x1.9259E3708BD3Ap-5, +0x1.9283586503FEp-5},
206
{+0x1.D77B117F230D6p-5, +0x1.D7BDCD778049Fp-5},
207
{+0x1.A1490C8C06BA7p-4, +0x1.A202B3FB84788p-4},
208
{+0x1.9697CB602C582p-3, +0x1.994FFB5DAF0F9p-3},
209
{+0x1.D0EF799001BA9p-3, +0x1.D5064E6FE82C4p-3},
210
{+0x1.E9950730C4696p-2, +0x1.FE767739D0F6Dp-2},
211
{+0x1.1ED06D50F7E88p-1, +0x1.30706F699466Dp-1},
212
{+0x1.D5B05A89D3E77p-1, +0x1.29517AB4C132Ap+0},
213
{+0x1.E264357EA0E29p-1, +0x1.3AA301F6EBB1Dp+0},
214
};
215
216
for(double[] testCase: testCases) {
217
failures += testAsinCase(testCase[0], testCase[1]);
218
}
219
220
return failures;
221
}
222
223
private static int testAsinCase(double input, double expected) {
224
int failures = 0;
225
double out = Tests.nextOut(expected);
226
failures += Tests.testBounds("Math.asin", input, Math.asin(input), expected, out);
227
failures += Tests.testBounds("StrictMath.asin", input, StrictMath.asin(input), expected, out);
228
return failures;
229
}
230
231
private static int testWorstCos() {
232
int failures = 0;
233
double [][] testCases = {
234
{+0x1.8000000000009p-23, +0x0.FFFFFFFFFFFB8p+0},
235
{+0x1.8000000000024p-22, +0x0.FFFFFFFFFFEE0p+0},
236
{+0x1.2000000000F30p-18, +0x0.FFFFFFFFF5E00p+0},
237
{+0x1.06B505550E6B2p-9, +0x0.FFFFDE4D1FDFFp+0},
238
{+0x1.97CCD3D2C438Fp-6, +0x0.FFEBB35D43854p+0},
239
240
{+0x1.549EC0C0C5AFAp-5, +0x1.FF8EB6A91ECB0p-1},
241
{+0x1.16E534EE36580p-4, +0x1.FED0476FC75C9p-1},
242
{+0x1.EFEEF61D39AC2p-3, +0x1.F10FC61E2C78Ep-1},
243
{+0x1.FEB1F7920E248p-2, +0x1.C1A27AE836F12p-1},
244
{+0x1.7CB7648526F99p-1, +0x1.78DAF01036D0Cp-1},
245
{+0x1.C65A170474549p-1, +0x1.434A3645BE208p-1},
246
{+0x1.6B8A6273D7C21p+0, +0x1.337FC5B072C52p-3},
247
};
248
249
for(double[] testCase: testCases) {
250
failures += testCosCase(testCase[0], testCase[1]);
251
}
252
253
return failures;
254
}
255
256
private static int testCosCase(double input, double expected) {
257
int failures = 0;
258
double out = Tests.nextOut(expected);
259
failures += Tests.testBounds("Math.cos", input, Math.cos(input), expected, out);
260
failures += Tests.testBounds("StrictMath.cos", input, StrictMath.cos(input), expected, out);
261
return failures;
262
}
263
264
private static int testWorstAcos() {
265
int failures = 0;
266
double [][] testCases = {
267
{+0x1.FD737BE914578p-11, +0x1.91E006D41D8D8p+0},
268
{+0x1.4182199998587p-1, +0x1.C8A538AE83D1Fp-1},
269
{+0x1.E45A1C93651ECp-1, +0x1.520DC553F6B23p-2},
270
{+0x1.F10FC61E2C78Fp-1, +0x1.EFEEF61D39AC1p-3},
271
};
272
273
for(double[] testCase: testCases) {
274
failures += testAcosCase(testCase[0], testCase[1]);
275
}
276
277
return failures;
278
}
279
280
private static int testAcosCase(double input, double expected) {
281
int failures = 0;
282
double out = Tests.nextOut(expected);
283
failures += Tests.testBounds("Math.acos", input, Math.acos(input), expected, out);
284
failures += Tests.testBounds("StrictMath.acos", input, StrictMath.acos(input), expected, out);
285
return failures;
286
}
287
288
private static int testWorstTan() {
289
int failures = 0;
290
double [][] testCases = {
291
{+0x1.DFFFFFFFFFF1Fp-22, +0x1.E000000000151p-22},
292
{+0x1.67FFFFFFFA114p-18, +0x1.6800000008E61p-18},
293
294
{+0x1.50486B2F87014p-5, +0x1.5078CEBFF9C72p-5},
295
{+0x1.52C39EF070CADp-4, +0x1.5389E6DF41978p-4},
296
{+0x1.A33F32AC5CEB5p-3, +0x1.A933FE176B375p-3},
297
{+0x1.D696BFA988DB9p-2, +0x1.FAC71CD34EEA6p-2},
298
{+0x1.46AC372243536p-1, +0x1.7BA49F739829Ep-1},
299
{+0x0.A3561B9121A9Bp+0, +0x0.BDD24FB9CC14Fp+0},
300
};
301
302
for(double[] testCase: testCases) {
303
failures += testTanCase(testCase[0], testCase[1]);
304
}
305
306
return failures;
307
}
308
309
private static int testTanCase(double input, double expected) {
310
int failures = 0;
311
double out = Tests.nextOut(expected);
312
failures += Tests.testBounds("Math.tan", input, Math.tan(input), expected, out);
313
failures += Tests.testBounds("StrictMath.tan", input, StrictMath.tan(input), expected, out);
314
return failures;
315
}
316
317
private static int testWorstAtan() {
318
int failures = 0;
319
double [][] testCases = {
320
{+0x1.E000000000546p-21, +0x1.DFFFFFFFFFC7Cp-21},
321
{+0x1.22E8D75E2BC7Fp-11, +0x1.22E8D5694AD2Bp-11},
322
323
{+0x1.0FC9F1FABE658p-5, +0x1.0FB06EDE9973Ap-5},
324
{+0x1.1BBE9C255698Dp-5, +0x1.1BA1951DB1D6Dp-5},
325
{+0x1.8DDD25AB90CA1p-5, +0x1.8D8D2D4BD6FA2p-5},
326
{+0x1.5389E6DF41979p-4, +0x1.52C39EF070CADp-4},
327
{+0x1.A933FE176B375p-3, +0x1.A33F32AC5CEB4p-3},
328
{+0x1.0F6E5D9960397p-2, +0x1.09544B71AD4A6p-2},
329
{+0x1.7BA49F739829Fp-1, +0x1.46AC372243536p-1},
330
331
{+0x0.BDD24FB9CC14F8p+0, +0x0.A3561B9121A9Bp+0},
332
};
333
334
for(double[] testCase: testCases) {
335
failures += testAtanCase(testCase[0], testCase[1]);
336
}
337
338
return failures;
339
}
340
341
private static int testAtanCase(double input, double expected) {
342
int failures = 0;
343
double out = Tests.nextOut(expected);
344
failures += Tests.testBounds("Math.atan", input, Math.atan(input), expected, out);
345
failures += Tests.testBounds("StrictMath.atan", input, StrictMath.atan(input), expected, out);
346
return failures;
347
}
348
349
private static int testWorstPow2() {
350
int failures = 0;
351
double [][] testCases = {
352
{+0x1.16A76EC41B516p-1, +0x1.7550685A42C63p+0},
353
{+0x1.3E34FA6AB969Ep-1, +0x1.89D948A94FE16p+0},
354
{+0x1.4A63FF1D53F53p-1, +0x1.90661DA12D528p+0},
355
{+0x1.B32A6C92D1185p-1, +0x1.CD6B37EDECEAFp+0},
356
357
{+0x1.25DD9EEDAC79Ap+0, +0x1.1BA39FF28E3E9p+1},
358
};
359
360
for(double[] testCase: testCases) {
361
failures += testPow2Case(testCase[0], testCase[1]);
362
}
363
364
return failures;
365
}
366
367
private static int testPow2Case(double input, double expected) {
368
int failures = 0;
369
double out = Tests.nextOut(expected);
370
failures += Tests.testBounds("Math.pow2", input, Math.pow(2, input), expected, out);
371
failures += Tests.testBounds("StrictMath.pow2", input, StrictMath.pow(2, input), expected, out);
372
return failures;
373
}
374
375
// 2.5 ulp error bound in the specification; the implementation
376
// does better on the tested values.
377
private static int testWorstSinh() {
378
int failures = 0;
379
double [][] testCases = {
380
{+0x1.DFFFFFFFFFE3Ep-20, +0x1.E000000000FD1p-20},
381
{+0x1.DFFFFFFFFE3E0p-18, +0x1.E00000000FD1Fp-18},
382
{+0x1.135E31FDD05D3p-5, +0x1.136B78B25CC57p-5},
383
{+0x1.0DC68D5E8F959p-3, +0x1.0E8E73DC4FEE3p-3},
384
{+0x1.616CC75D49226p-2, +0x1.687BD068C1C1Ep-2},
385
{+0x1.3FFC12B81CBC2p+0, +0x1.9A0FF413A1AF2p+0},
386
{+0x2.FE008C44BACA2p+0, +0x9.F08A43ED03AEp+0},
387
{+0x1.C089FCF166171p+4, +0x1.5C452E0E37569p+39},
388
{+0x1.E07E71BFCF06Fp+5, +0x1.91EC4412C344Fp+85},
389
{+0x1.54CD1FEA7663Ap+7, +0x1.C90810D354618p+244},
390
{+0x1.D6479EBA7C971p+8, +0x1.62A88613629B5p+677},
391
};
392
393
for(double[] testCase: testCases) {
394
failures += testSinhCase(testCase[0], testCase[1]);
395
}
396
397
return failures;
398
}
399
400
private static int testSinhCase(double input, double expected) {
401
int failures = 0;
402
double out = Tests.nextOut(expected);
403
failures += Tests.testBounds("Math.sinh", input, Math.sinh(input), expected, out);
404
failures += Tests.testBounds("StrictMath.sinh", input, StrictMath.sinh(input), expected, out);
405
return failures;
406
}
407
408
// 2.5 ulp error bound in the specification; the implementation
409
// does better on the tested values.
410
private static int testWorstCosh() {
411
int failures = 0;
412
double [][] testCases = {
413
{+0x1.17D8A9F206217p-6, +0x1.00098F5F09BE3p+0},
414
{+0x1.BF0305E2C6C37p-3, +0x1.061F4C39E16F2p+0},
415
{+0x1.03923F2B47C07p-1, +0x1.219C1989E3372p+0},
416
{+0x1.A6031CD5F93BAp-1, +0x1.5BFF041B260FDp+0},
417
{+0x1.104B648F113A1p+0, +0x1.9EFDCA62B7009p+0},
418
{+0x1.EA5F2F2E4B0C5p+1, +0x17.10DB0CD0FED5p+0},
419
};
420
421
for(double[] testCase: testCases) {
422
failures += testCoshCase(testCase[0], testCase[1]);
423
}
424
425
return failures;
426
}
427
428
private static int testCoshCase(double input, double expected) {
429
int failures = 0;
430
double out = Tests.nextOut(expected);
431
failures += Tests.testBounds("Math.cosh", input, Math.cosh(input), expected, out);
432
failures += Tests.testBounds("StrictMath.cosh", input, StrictMath.cosh(input), expected, out);
433
return failures;
434
}
435
}
436
437