Path: blob/master/test/jdk/java/lang/StrictMath/FdlibmTranslit.java
41149 views
/*1* Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.2* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.3*4* This code is free software; you can redistribute it and/or modify it5* under the terms of the GNU General Public License version 2 only, as6* published by the Free Software Foundation. Oracle designates this7* particular file as subject to the "Classpath" exception as provided8* by Oracle in the LICENSE file that accompanied this code.9*10* This code is distributed in the hope that it will be useful, but WITHOUT11* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or12* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License13* version 2 for more details (a copy is included in the LICENSE file that14* accompanied this code).15*16* You should have received a copy of the GNU General Public License version17* 2 along with this work; if not, write to the Free Software Foundation,18* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.19*20* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA21* or visit www.oracle.com if you need additional information or have any22* questions.23*/2425/**26* A transliteration of the "Freely Distributable Math Library"27* algorithms from C into Java. That is, this port of the algorithms28* is as close to the C originals as possible while still being29* readable legal Java.30*/31public class FdlibmTranslit {32private FdlibmTranslit() {33throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");34}3536/**37* Return the low-order 32 bits of the double argument as an int.38*/39private static int __LO(double x) {40long transducer = Double.doubleToRawLongBits(x);41return (int)transducer;42}4344/**45* Return a double with its low-order bits of the second argument46* and the high-order bits of the first argument..47*/48private static double __LO(double x, int low) {49long transX = Double.doubleToRawLongBits(x);50return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |51(low & 0x0000_0000_FFFF_FFFFL));52}5354/**55* Return the high-order 32 bits of the double argument as an int.56*/57private static int __HI(double x) {58long transducer = Double.doubleToRawLongBits(x);59return (int)(transducer >> 32);60}6162/**63* Return a double with its high-order bits of the second argument64* and the low-order bits of the first argument..65*/66private static double __HI(double x, int high) {67long transX = Double.doubleToRawLongBits(x);68return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |69( ((long)high)) << 32 );70}7172public static double hypot(double x, double y) {73return Hypot.compute(x, y);74}7576/**77* cbrt(x)78* Return cube root of x79*/80public static class Cbrt {81// unsigned82private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */83private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */8485private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */86private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */87private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */88private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */89private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */9091public static strictfp double compute(double x) {92int hx;93double r, s, t=0.0, w;94int sign; // unsigned9596hx = __HI(x); // high word of x97sign = hx & 0x80000000; // sign= sign(x)98hx ^= sign;99if (hx >= 0x7ff00000)100return (x+x); // cbrt(NaN,INF) is itself101if ((hx | __LO(x)) == 0)102return(x); // cbrt(0) is itself103104x = __HI(x, hx); // x <- |x|105// rough cbrt to 5 bits106if (hx < 0x00100000) { // subnormal number107t = __HI(t, 0x43500000); // set t= 2**54108t *= x;109t = __HI(t, __HI(t)/3+B2);110} else {111t = __HI(t, hx/3+B1);112}113114// new cbrt to 23 bits, may be implemented in single precision115r = t * t/x;116s = C + r*t;117t *= G + F/(s + E + D/s);118119// chopped to 20 bits and make it larger than cbrt(x)120t = __LO(t, 0);121t = __HI(t, __HI(t)+0x00000001);122123124// one step newton iteration to 53 bits with error less than 0.667 ulps125s = t * t; // t*t is exact126r = x / s;127w = t + t;128r= (r - t)/(w + r); // r-s is exact129t= t + t*r;130131// retore the sign bit132t = __HI(t, __HI(t) | sign);133return(t);134}135}136137/**138* hypot(x,y)139*140* Method :141* If (assume round-to-nearest) z = x*x + y*y142* has error less than sqrt(2)/2 ulp, than143* sqrt(z) has error less than 1 ulp (exercise).144*145* So, compute sqrt(x*x + y*y) with some care as146* follows to get the error below 1 ulp:147*148* Assume x > y > 0;149* (if possible, set rounding to round-to-nearest)150* 1. if x > 2y use151* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y152* where x1 = x with lower 32 bits cleared, x2 = x - x1; else153* 2. if x <= 2y use154* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))155* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,156* y1= y with lower 32 bits chopped, y2 = y - y1.157*158* NOTE: scaling may be necessary if some argument is too159* large or too tiny160*161* Special cases:162* hypot(x,y) is INF if x or y is +INF or -INF; else163* hypot(x,y) is NAN if x or y is NAN.164*165* Accuracy:166* hypot(x,y) returns sqrt(x^2 + y^2) with error less167* than 1 ulps (units in the last place)168*/169static class Hypot {170public static double compute(double x, double y) {171double a = x;172double b = y;173double t1, t2, y1, y2, w;174int j, k, ha, hb;175176ha = __HI(x) & 0x7fffffff; // high word of x177hb = __HI(y) & 0x7fffffff; // high word of y178if(hb > ha) {179a = y;180b = x;181j = ha;182ha = hb;183hb = j;184} else {185a = x;186b = y;187}188a = __HI(a, ha); // a <- |a|189b = __HI(b, hb); // b <- |b|190if ((ha - hb) > 0x3c00000) {191return a + b; // x / y > 2**60192}193k=0;194if (ha > 0x5f300000) { // a>2**500195if (ha >= 0x7ff00000) { // Inf or NaN196w = a + b; // for sNaN197if (((ha & 0xfffff) | __LO(a)) == 0)198w = a;199if (((hb ^ 0x7ff00000) | __LO(b)) == 0)200w = b;201return w;202}203// scale a and b by 2**-600204ha -= 0x25800000;205hb -= 0x25800000;206k += 600;207a = __HI(a, ha);208b = __HI(b, hb);209}210if (hb < 0x20b00000) { // b < 2**-500211if (hb <= 0x000fffff) { // subnormal b or 0 */212if ((hb | (__LO(b))) == 0)213return a;214t1 = 0;215t1 = __HI(t1, 0x7fd00000); // t1=2^1022216b *= t1;217a *= t1;218k -= 1022;219} else { // scale a and b by 2^600220ha += 0x25800000; // a *= 2^600221hb += 0x25800000; // b *= 2^600222k -= 600;223a = __HI(a, ha);224b = __HI(b, hb);225}226}227// medium size a and b228w = a - b;229if (w > b) {230t1 = 0;231t1 = __HI(t1, ha);232t2 = a - t1;233w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));234} else {235a = a + a;236y1 = 0;237y1 = __HI(y1, hb);238y2 = b - y1;239t1 = 0;240t1 = __HI(t1, ha + 0x00100000);241t2 = a - t1;242w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));243}244if (k != 0) {245t1 = 1.0;246int t1_hi = __HI(t1);247t1_hi += (k << 20);248t1 = __HI(t1, t1_hi);249return t1 * w;250} else251return w;252}253}254255/**256* Returns the exponential of x.257*258* Method259* 1. Argument reduction:260* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.261* Given x, find r and integer k such that262*263* x = k*ln2 + r, |r| <= 0.5*ln2.264*265* Here r will be represented as r = hi-lo for better266* accuracy.267*268* 2. Approximation of exp(r) by a special rational function on269* the interval [0,0.34658]:270* Write271* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...272* We use a special Reme algorithm on [0,0.34658] to generate273* a polynomial of degree 5 to approximate R. The maximum error274* of this polynomial approximation is bounded by 2**-59. In275* other words,276* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5277* (where z=r*r, and the values of P1 to P5 are listed below)278* and279* | 5 | -59280* | 2.0+P1*z+...+P5*z - R(z) | <= 2281* | |282* The computation of exp(r) thus becomes283* 2*r284* exp(r) = 1 + -------285* R - r286* r*R1(r)287* = 1 + r + ----------- (for better accuracy)288* 2 - R1(r)289* where290* 2 4 10291* R1(r) = r - (P1*r + P2*r + ... + P5*r ).292*293* 3. Scale back to obtain exp(x):294* From step 1, we have295* exp(x) = 2^k * exp(r)296*297* Special cases:298* exp(INF) is INF, exp(NaN) is NaN;299* exp(-INF) is 0, and300* for finite argument, only exp(0)=1 is exact.301*302* Accuracy:303* according to an error analysis, the error is always less than304* 1 ulp (unit in the last place).305*306* Misc. info.307* For IEEE double308* if x > 7.09782712893383973096e+02 then exp(x) overflow309* if x < -7.45133219101941108420e+02 then exp(x) underflow310*311* Constants:312* The hexadecimal values are the intended ones for the following313* constants. The decimal values may be used, provided that the314* compiler will convert from decimal to binary accurately enough315* to produce the hexadecimal values shown.316*/317static class Exp {318private static final double one = 1.0;319private static final double[] halF = {0.5,-0.5,};320private static final double huge = 1.0e+300;321private static final double twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/322private static final double o_threshold= 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */323private static final double u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */324private static final double[] ln2HI ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */325-6.93147180369123816490e-01}; /* 0xbfe62e42, 0xfee00000 */326private static final double[] ln2LO ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */327-1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */328private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */329private static final double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */330private static final double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */331private static final double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */332private static final double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */333private static final double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */334335public static strictfp double compute(double x) {336double y,hi=0,lo=0,c,t;337int k=0,xsb;338/*unsigned*/ int hx;339340hx = __HI(x); /* high word of x */341xsb = (hx>>31)&1; /* sign bit of x */342hx &= 0x7fffffff; /* high word of |x| */343344/* filter out non-finite argument */345if(hx >= 0x40862E42) { /* if |x|>=709.78... */346if(hx>=0x7ff00000) {347if(((hx&0xfffff)|__LO(x))!=0)348return x+x; /* NaN */349else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */350}351if(x > o_threshold) return huge*huge; /* overflow */352if(x < u_threshold) return twom1000*twom1000; /* underflow */353}354355/* argument reduction */356if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */357if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */358hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;359} else {360k = (int)(invln2*x+halF[xsb]);361t = k;362hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */363lo = t*ln2LO[0];364}365x = hi - lo;366}367else if(hx < 0x3e300000) { /* when |x|<2**-28 */368if(huge+x>one) return one+x;/* trigger inexact */369}370else k = 0;371372/* x is now in primary range */373t = x*x;374c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));375if(k==0) return one-((x*c)/(c-2.0)-x);376else y = one-((lo-(x*c)/(2.0-c))-hi);377if(k >= -1021) {378y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */379return y;380} else {381y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */382return y*twom1000;383}384}385}386}387388389