Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/test/jdk/sun/security/ssl/ClientHandshaker/LengthCheckTest.java
41152 views
1
/*
2
* Copyright (c) 2015, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
/*
25
* @test
26
* @bug 8044860
27
* @summary Vectors and fixed length fields should be verified
28
* for allowed sizes.
29
* @library /test/lib
30
* @modules java.base/sun.security.ssl
31
* @run main/othervm LengthCheckTest
32
* @key randomness
33
*/
34
35
/**
36
* A SSLEngine usage example which simplifies the presentation
37
* by removing the I/O and multi-threading concerns.
38
*
39
* The test creates two SSLEngines, simulating a client and server.
40
* The "transport" layer consists two byte buffers: think of them
41
* as directly connected pipes.
42
*
43
* Note, this is a *very* simple example: real code will be much more
44
* involved. For example, different threading and I/O models could be
45
* used, transport mechanisms could close unexpectedly, and so on.
46
*
47
* When this application runs, notice that several messages
48
* (wrap/unwrap) pass before any application data is consumed or
49
* produced. (For more information, please see the SSL/TLS
50
* specifications.) There may several steps for a successful handshake,
51
* so it's typical to see the following series of operations:
52
*
53
* client server message
54
* ====== ====== =======
55
* wrap() ... ClientHello
56
* ... unwrap() ClientHello
57
* ... wrap() ServerHello/Certificate
58
* unwrap() ... ServerHello/Certificate
59
* wrap() ... ClientKeyExchange
60
* wrap() ... ChangeCipherSpec
61
* wrap() ... Finished
62
* ... unwrap() ClientKeyExchange
63
* ... unwrap() ChangeCipherSpec
64
* ... unwrap() Finished
65
* ... wrap() ChangeCipherSpec
66
* ... wrap() Finished
67
* unwrap() ... ChangeCipherSpec
68
* unwrap() ... Finished
69
*/
70
71
import javax.net.ssl.*;
72
import javax.net.ssl.SSLEngineResult.*;
73
import java.io.*;
74
import java.security.*;
75
import java.nio.*;
76
import java.util.List;
77
import java.util.ArrayList;
78
import java.util.Iterator;
79
80
import jdk.test.lib.security.SecurityUtils;
81
82
public class LengthCheckTest {
83
84
/*
85
* Enables logging of the SSLEngine operations.
86
*/
87
private static final boolean logging = true;
88
89
/*
90
* Enables the JSSE system debugging system property:
91
*
92
* -Djavax.net.debug=all
93
*
94
* This gives a lot of low-level information about operations underway,
95
* including specific handshake messages, and might be best examined
96
* after gaining some familiarity with this application.
97
*/
98
private static final boolean debug = false;
99
private static final boolean dumpBufs = true;
100
101
private final SSLContext sslc;
102
103
private SSLEngine clientEngine; // client Engine
104
private ByteBuffer clientOut; // write side of clientEngine
105
private ByteBuffer clientIn; // read side of clientEngine
106
107
private SSLEngine serverEngine; // server Engine
108
private ByteBuffer serverOut; // write side of serverEngine
109
private ByteBuffer serverIn; // read side of serverEngine
110
111
private HandshakeTest handshakeTest;
112
113
/*
114
* For data transport, this example uses local ByteBuffers. This
115
* isn't really useful, but the purpose of this example is to show
116
* SSLEngine concepts, not how to do network transport.
117
*/
118
private ByteBuffer cTOs; // "reliable" transport client->server
119
private ByteBuffer sTOc; // "reliable" transport server->client
120
121
/*
122
* The following is to set up the keystores.
123
*/
124
private static final String pathToStores = "../../../../javax/net/ssl/etc";
125
private static final String keyStoreFile = "keystore";
126
private static final String trustStoreFile = "truststore";
127
private static final String passwd = "passphrase";
128
129
private static final String keyFilename =
130
System.getProperty("test.src", ".") + "/" + pathToStores +
131
"/" + keyStoreFile;
132
private static final String trustFilename =
133
System.getProperty("test.src", ".") + "/" + pathToStores +
134
"/" + trustStoreFile;
135
136
// Define a few basic TLS record and message types we might need
137
private static final int TLS_RECTYPE_CCS = 0x14;
138
private static final int TLS_RECTYPE_ALERT = 0x15;
139
private static final int TLS_RECTYPE_HANDSHAKE = 0x16;
140
private static final int TLS_RECTYPE_APPDATA = 0x17;
141
142
private static final int TLS_HS_HELLO_REQUEST = 0x00;
143
private static final int TLS_HS_CLIENT_HELLO = 0x01;
144
private static final int TLS_HS_SERVER_HELLO = 0x02;
145
private static final int TLS_HS_CERTIFICATE = 0x0B;
146
private static final int TLS_HS_SERVER_KEY_EXCHG = 0x0C;
147
private static final int TLS_HS_CERT_REQUEST = 0x0D;
148
private static final int TLS_HS_SERVER_HELLO_DONE = 0x0E;
149
private static final int TLS_HS_CERT_VERIFY = 0x0F;
150
private static final int TLS_HS_CLIENT_KEY_EXCHG = 0x10;
151
private static final int TLS_HS_FINISHED = 0x14;
152
153
// We're not going to define all the alert types in TLS, just
154
// the ones we think we'll need to reference by name.
155
private static final int TLS_ALERT_LVL_WARNING = 0x01;
156
private static final int TLS_ALERT_LVL_FATAL = 0x02;
157
158
private static final int TLS_ALERT_UNEXPECTED_MSG = 0x0A;
159
private static final int TLS_ALERT_HANDSHAKE_FAILURE = 0x28;
160
private static final int TLS_ALERT_INTERNAL_ERROR = 0x50;
161
private static final int TLS_ALERT_ILLEGAL_PARAMETER = 0x2F;
162
163
public interface HandshakeTest {
164
void execTest() throws Exception;
165
}
166
167
public final HandshakeTest servSendLongID = new HandshakeTest() {
168
@Override
169
public void execTest() throws Exception {
170
boolean gotException = false;
171
SSLEngineResult clientResult; // results from client's last op
172
SSLEngineResult serverResult; // results from server's last op
173
174
log("\n==== Test: Client receives 64-byte session ID ====");
175
176
// Send Client Hello
177
clientResult = clientEngine.wrap(clientOut, cTOs);
178
log("client wrap: ", clientResult);
179
runDelegatedTasks(clientResult, clientEngine);
180
cTOs.flip();
181
dumpByteBuffer("CLIENT-TO-SERVER", cTOs);
182
183
// Server consumes Client Hello
184
serverResult = serverEngine.unwrap(cTOs, serverIn);
185
log("server unwrap: ", serverResult);
186
runDelegatedTasks(serverResult, serverEngine);
187
cTOs.compact();
188
189
// Server generates ServerHello/Cert/Done record
190
serverResult = serverEngine.wrap(serverOut, sTOc);
191
log("server wrap: ", serverResult);
192
runDelegatedTasks(serverResult, serverEngine);
193
sTOc.flip();
194
195
// Intercept the ServerHello messages and instead send
196
// one that has a 64-byte session ID.
197
if (isTlsMessage(sTOc, TLS_RECTYPE_HANDSHAKE,
198
TLS_HS_SERVER_HELLO)) {
199
ArrayList<ByteBuffer> recList = splitRecord(sTOc);
200
201
// Use the original ServerHello as a template to craft one
202
// with a longer-than-allowed session ID.
203
ByteBuffer servHelloBuf =
204
createEvilServerHello(recList.get(0), 64);
205
206
recList.set(0, servHelloBuf);
207
208
// Now send each ByteBuffer (each being a complete
209
// TLS record) into the client-side unwrap.
210
// for (ByteBuffer bBuf : recList) {
211
212
Iterator<ByteBuffer> iter = recList.iterator();
213
while (!gotException && (iter.hasNext())) {
214
ByteBuffer bBuf = iter.next();
215
dumpByteBuffer("SERVER-TO-CLIENT", bBuf);
216
try {
217
clientResult = clientEngine.unwrap(bBuf, clientIn);
218
} catch (SSLProtocolException e) {
219
log("Received expected SSLProtocolException: " + e);
220
gotException = true;
221
}
222
log("client unwrap: ", clientResult);
223
runDelegatedTasks(clientResult, clientEngine);
224
}
225
} else {
226
dumpByteBuffer("SERVER-TO-CLIENT", sTOc);
227
log("client unwrap: ", clientResult);
228
runDelegatedTasks(clientResult, clientEngine);
229
}
230
sTOc.compact();
231
232
// The Client should now send a TLS Alert
233
clientResult = clientEngine.wrap(clientOut, cTOs);
234
log("client wrap: ", clientResult);
235
runDelegatedTasks(clientResult, clientEngine);
236
cTOs.flip();
237
dumpByteBuffer("CLIENT-TO-SERVER", cTOs);
238
239
// At this point we can verify that both an exception
240
// was thrown and the proper action (a TLS alert) was
241
// sent back to the server.
242
if (gotException == false ||
243
!isTlsMessage(cTOs, TLS_RECTYPE_ALERT, TLS_ALERT_LVL_FATAL,
244
TLS_ALERT_ILLEGAL_PARAMETER)) {
245
throw new SSLException(
246
"Client failed to throw Alert:fatal:internal_error");
247
}
248
}
249
};
250
251
public final HandshakeTest clientSendLongID = new HandshakeTest() {
252
@Override
253
public void execTest() throws Exception {
254
boolean gotException = false;
255
SSLEngineResult clientResult; // results from client's last op
256
SSLEngineResult serverResult; // results from server's last op
257
258
log("\n==== Test: Server receives 64-byte session ID ====");
259
260
// Send Client Hello
261
ByteBuffer evilClientHello = createEvilClientHello(64);
262
dumpByteBuffer("CLIENT-TO-SERVER", evilClientHello);
263
264
// Server consumes Client Hello
265
serverResult = serverEngine.unwrap(evilClientHello, serverIn);
266
log("server unwrap: ", serverResult);
267
runDelegatedTasks(serverResult, serverEngine);
268
evilClientHello.compact();
269
270
// Under normal circumstances this should be a ServerHello
271
// But should throw an exception instead due to the invalid
272
// session ID.
273
try {
274
serverResult = serverEngine.wrap(serverOut, sTOc);
275
log("server wrap: ", serverResult);
276
runDelegatedTasks(serverResult, serverEngine);
277
} catch (SSLProtocolException ssle) {
278
log("Received expected SSLProtocolException: " + ssle);
279
gotException = true;
280
}
281
282
// We expect to see the server generate an alert here
283
serverResult = serverEngine.wrap(serverOut, sTOc);
284
log("server wrap: ", serverResult);
285
runDelegatedTasks(serverResult, serverEngine);
286
sTOc.flip();
287
dumpByteBuffer("SERVER-TO-CLIENT", sTOc);
288
289
// At this point we can verify that both an exception
290
// was thrown and the proper action (a TLS alert) was
291
// sent back to the client.
292
if (gotException == false ||
293
!isTlsMessage(sTOc, TLS_RECTYPE_ALERT, TLS_ALERT_LVL_FATAL,
294
TLS_ALERT_ILLEGAL_PARAMETER)) {
295
throw new SSLException(
296
"Server failed to throw Alert:fatal:internal_error");
297
}
298
}
299
};
300
301
302
/*
303
* Main entry point for this test.
304
*/
305
public static void main(String args[]) throws Exception {
306
// Re-enable TLSv1 since test depends on it.
307
SecurityUtils.removeFromDisabledTlsAlgs("TLSv1");
308
309
List<LengthCheckTest> ccsTests = new ArrayList<>();
310
311
if (debug) {
312
System.setProperty("javax.net.debug", "ssl");
313
}
314
315
ccsTests.add(new LengthCheckTest("ServSendLongID"));
316
ccsTests.add(new LengthCheckTest("ClientSendLongID"));
317
318
for (LengthCheckTest test : ccsTests) {
319
test.runTest();
320
}
321
322
System.out.println("Test Passed.");
323
}
324
325
/*
326
* Create an initialized SSLContext to use for these tests.
327
*/
328
public LengthCheckTest(String testName) throws Exception {
329
330
KeyStore ks = KeyStore.getInstance("JKS");
331
KeyStore ts = KeyStore.getInstance("JKS");
332
333
char[] passphrase = "passphrase".toCharArray();
334
335
ks.load(new FileInputStream(keyFilename), passphrase);
336
ts.load(new FileInputStream(trustFilename), passphrase);
337
338
KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
339
kmf.init(ks, passphrase);
340
341
TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
342
tmf.init(ts);
343
344
SSLContext sslCtx = SSLContext.getInstance("TLS");
345
346
sslCtx.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);
347
348
sslc = sslCtx;
349
350
switch (testName) {
351
case "ServSendLongID":
352
handshakeTest = servSendLongID;
353
break;
354
case "ClientSendLongID":
355
handshakeTest = clientSendLongID;
356
break;
357
default:
358
throw new IllegalArgumentException("Unknown test name: " +
359
testName);
360
}
361
}
362
363
/*
364
* Run the test.
365
*
366
* Sit in a tight loop, both engines calling wrap/unwrap regardless
367
* of whether data is available or not. We do this until both engines
368
* report back they are closed.
369
*
370
* The main loop handles all of the I/O phases of the SSLEngine's
371
* lifetime:
372
*
373
* initial handshaking
374
* application data transfer
375
* engine closing
376
*
377
* One could easily separate these phases into separate
378
* sections of code.
379
*/
380
private void runTest() throws Exception {
381
boolean dataDone = false;
382
383
createSSLEngines();
384
createBuffers();
385
386
handshakeTest.execTest();
387
}
388
389
/*
390
* Using the SSLContext created during object creation,
391
* create/configure the SSLEngines we'll use for this test.
392
*/
393
private void createSSLEngines() throws Exception {
394
/*
395
* Configure the serverEngine to act as a server in the SSL/TLS
396
* handshake. Also, require SSL client authentication.
397
*/
398
serverEngine = sslc.createSSLEngine();
399
serverEngine.setUseClientMode(false);
400
serverEngine.setNeedClientAuth(false);
401
402
/*
403
* Similar to above, but using client mode instead.
404
*/
405
clientEngine = sslc.createSSLEngine("client", 80);
406
clientEngine.setUseClientMode(true);
407
408
// In order to make a test that will be backwards compatible
409
// going back to JDK 5, force the handshake to be TLS 1.0 and
410
// use one of the older cipher suites.
411
clientEngine.setEnabledProtocols(new String[]{"TLSv1"});
412
clientEngine.setEnabledCipherSuites(
413
new String[]{"TLS_RSA_WITH_AES_128_CBC_SHA"});
414
}
415
416
/*
417
* Create and size the buffers appropriately.
418
*/
419
private void createBuffers() {
420
421
/*
422
* We'll assume the buffer sizes are the same
423
* between client and server.
424
*/
425
SSLSession session = clientEngine.getSession();
426
int appBufferMax = session.getApplicationBufferSize();
427
int netBufferMax = session.getPacketBufferSize();
428
429
/*
430
* We'll make the input buffers a bit bigger than the max needed
431
* size, so that unwrap()s following a successful data transfer
432
* won't generate BUFFER_OVERFLOWS.
433
*
434
* We'll use a mix of direct and indirect ByteBuffers for
435
* tutorial purposes only. In reality, only use direct
436
* ByteBuffers when they give a clear performance enhancement.
437
*/
438
clientIn = ByteBuffer.allocate(appBufferMax + 50);
439
serverIn = ByteBuffer.allocate(appBufferMax + 50);
440
441
cTOs = ByteBuffer.allocateDirect(netBufferMax);
442
sTOc = ByteBuffer.allocateDirect(netBufferMax);
443
444
clientOut = ByteBuffer.wrap("Hi Server, I'm Client".getBytes());
445
serverOut = ByteBuffer.wrap("Hello Client, I'm Server".getBytes());
446
}
447
448
/*
449
* If the result indicates that we have outstanding tasks to do,
450
* go ahead and run them in this thread.
451
*/
452
private static void runDelegatedTasks(SSLEngineResult result,
453
SSLEngine engine) throws Exception {
454
455
if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) {
456
Runnable runnable;
457
while ((runnable = engine.getDelegatedTask()) != null) {
458
log("\trunning delegated task...");
459
runnable.run();
460
}
461
HandshakeStatus hsStatus = engine.getHandshakeStatus();
462
if (hsStatus == HandshakeStatus.NEED_TASK) {
463
throw new Exception(
464
"handshake shouldn't need additional tasks");
465
}
466
log("\tnew HandshakeStatus: " + hsStatus);
467
}
468
}
469
470
private static boolean isEngineClosed(SSLEngine engine) {
471
return (engine.isOutboundDone() && engine.isInboundDone());
472
}
473
474
/*
475
* Simple check to make sure everything came across as expected.
476
*/
477
private static void checkTransfer(ByteBuffer a, ByteBuffer b)
478
throws Exception {
479
a.flip();
480
b.flip();
481
482
if (!a.equals(b)) {
483
throw new Exception("Data didn't transfer cleanly");
484
} else {
485
log("\tData transferred cleanly");
486
}
487
488
a.position(a.limit());
489
b.position(b.limit());
490
a.limit(a.capacity());
491
b.limit(b.capacity());
492
}
493
494
/*
495
* Logging code
496
*/
497
private static boolean resultOnce = true;
498
499
private static void log(String str, SSLEngineResult result) {
500
if (!logging) {
501
return;
502
}
503
if (resultOnce) {
504
resultOnce = false;
505
System.out.println("The format of the SSLEngineResult is: \n" +
506
"\t\"getStatus() / getHandshakeStatus()\" +\n" +
507
"\t\"bytesConsumed() / bytesProduced()\"\n");
508
}
509
HandshakeStatus hsStatus = result.getHandshakeStatus();
510
log(str +
511
result.getStatus() + "/" + hsStatus + ", " +
512
result.bytesConsumed() + "/" + result.bytesProduced() +
513
" bytes");
514
if (hsStatus == HandshakeStatus.FINISHED) {
515
log("\t...ready for application data");
516
}
517
}
518
519
private static void log(String str) {
520
if (logging) {
521
System.out.println(str);
522
}
523
}
524
525
/**
526
* Split a record consisting of multiple TLS handshake messages
527
* into individual TLS records, each one in a ByteBuffer of its own.
528
*
529
* @param tlsRecord A ByteBuffer containing the tls record data.
530
* The position of the buffer should be at the first byte
531
* in the TLS record data.
532
*
533
* @return An ArrayList consisting of one or more ByteBuffers. Each
534
* ByteBuffer will contain a single TLS record with one message.
535
* That message will be taken from the input record. The order
536
* of the messages in the ArrayList will be the same as they
537
* were in the input record.
538
*/
539
private ArrayList<ByteBuffer> splitRecord(ByteBuffer tlsRecord) {
540
SSLSession session = clientEngine.getSession();
541
int netBufferMax = session.getPacketBufferSize();
542
ArrayList<ByteBuffer> recordList = new ArrayList<>();
543
544
if (tlsRecord.hasRemaining()) {
545
int type = Byte.toUnsignedInt(tlsRecord.get());
546
byte ver_major = tlsRecord.get();
547
byte ver_minor = tlsRecord.get();
548
int recLen = Short.toUnsignedInt(tlsRecord.getShort());
549
byte[] newMsgData = null;
550
while (tlsRecord.hasRemaining()) {
551
ByteBuffer newRecord = ByteBuffer.allocateDirect(netBufferMax);
552
switch (type) {
553
case TLS_RECTYPE_CCS:
554
case TLS_RECTYPE_ALERT:
555
case TLS_RECTYPE_APPDATA:
556
// None of our tests have multiple non-handshake
557
// messages coalesced into a single record.
558
break;
559
case TLS_RECTYPE_HANDSHAKE:
560
newMsgData = getHandshakeMessage(tlsRecord);
561
break;
562
}
563
564
// Put a new TLS record on the destination ByteBuffer
565
newRecord.put((byte)type);
566
newRecord.put(ver_major);
567
newRecord.put(ver_minor);
568
newRecord.putShort((short)newMsgData.length);
569
570
// Now add the message content itself and attach to the
571
// returned ArrayList
572
newRecord.put(newMsgData);
573
newRecord.flip();
574
recordList.add(newRecord);
575
}
576
}
577
578
return recordList;
579
}
580
581
private static ByteBuffer createEvilClientHello(int sessIdLen) {
582
ByteBuffer newRecord = ByteBuffer.allocateDirect(4096);
583
584
// Lengths will initially be place holders until we determine the
585
// finished length of the ByteBuffer. Then we'll go back and scribble
586
// in the correct lengths.
587
588
newRecord.put((byte)TLS_RECTYPE_HANDSHAKE); // Record type
589
newRecord.putShort((short)0x0301); // Protocol (TLS 1.0)
590
newRecord.putShort((short)0); // Length place holder
591
592
newRecord.putInt(TLS_HS_CLIENT_HELLO << 24); // HS type and length
593
newRecord.putShort((short)0x0301);
594
newRecord.putInt((int)(System.currentTimeMillis() / 1000));
595
SecureRandom sr = new SecureRandom();
596
byte[] randBuf = new byte[28];
597
sr.nextBytes(randBuf);
598
newRecord.put(randBuf); // Client Random
599
newRecord.put((byte)sessIdLen); // Session ID length
600
if (sessIdLen > 0) {
601
byte[] sessId = new byte[sessIdLen];
602
sr.nextBytes(sessId);
603
newRecord.put(sessId); // Session ID
604
}
605
newRecord.putShort((short)2); // 2 bytes of ciphers
606
newRecord.putShort((short)0x002F); // TLS_RSA_AES_CBC_SHA
607
newRecord.putShort((short)0x0100); // only null compression
608
newRecord.putShort((short)5); // 5 bytes of extensions
609
newRecord.putShort((short)0xFF01); // Renegotiation info
610
newRecord.putShort((short)1);
611
newRecord.put((byte)0); // No reneg info exts
612
613
// Go back and fill in the correct length values for the record
614
// and handshake message headers.
615
int recordLength = newRecord.position();
616
newRecord.putShort(3, (short)(recordLength - 5));
617
int newTypeAndLen = (newRecord.getInt(5) & 0xFF000000) |
618
((recordLength - 9) & 0x00FFFFFF);
619
newRecord.putInt(5, newTypeAndLen);
620
621
newRecord.flip();
622
return newRecord;
623
}
624
625
private static ByteBuffer createEvilServerHello(ByteBuffer origHello,
626
int newSessIdLen) {
627
if (newSessIdLen < 0 || newSessIdLen > Byte.MAX_VALUE) {
628
throw new RuntimeException("Length must be 0 <= X <= 127");
629
}
630
631
ByteBuffer newRecord = ByteBuffer.allocateDirect(4096);
632
// Copy the bytes from the old hello to the new up to the session ID
633
// field. We will go back later and fill in a new length field in
634
// the record header. This includes the record header (5 bytes), the
635
// Handshake message header (4 bytes), protocol version (2 bytes),
636
// and the random (32 bytes).
637
ByteBuffer scratchBuffer = origHello.slice();
638
scratchBuffer.limit(43);
639
newRecord.put(scratchBuffer);
640
641
// Advance the position in the originial hello buffer past the
642
// session ID.
643
origHello.position(43);
644
int origIDLen = Byte.toUnsignedInt(origHello.get());
645
if (origIDLen > 0) {
646
// Skip over the session ID
647
origHello.position(origHello.position() + origIDLen);
648
}
649
650
// Now add our own sessionID to the new record
651
SecureRandom sr = new SecureRandom();
652
byte[] sessId = new byte[newSessIdLen];
653
sr.nextBytes(sessId);
654
newRecord.put((byte)newSessIdLen);
655
newRecord.put(sessId);
656
657
// Create another slice in the original buffer, based on the position
658
// past the session ID. Copy the remaining bytes into the new
659
// hello buffer. Then go back and fix up the length
660
newRecord.put(origHello.slice());
661
662
// Go back and fill in the correct length values for the record
663
// and handshake message headers.
664
int recordLength = newRecord.position();
665
newRecord.putShort(3, (short)(recordLength - 5));
666
int newTypeAndLen = (newRecord.getInt(5) & 0xFF000000) |
667
((recordLength - 9) & 0x00FFFFFF);
668
newRecord.putInt(5, newTypeAndLen);
669
670
newRecord.flip();
671
return newRecord;
672
}
673
674
/**
675
* Look at an incoming TLS record and see if it is the desired
676
* record type, and where appropriate the correct subtype.
677
*
678
* @param srcRecord The input TLS record to be evaluated. This
679
* method will only look at the leading message if multiple
680
* TLS handshake messages are coalesced into a single record.
681
* @param reqRecType The requested TLS record type
682
* @param recParams Zero or more integer sub type fields. For CCS
683
* and ApplicationData, no params are used. For handshake records,
684
* one value corresponding to the HandshakeType is required.
685
* For Alerts, two values corresponding to AlertLevel and
686
* AlertDescription are necessary.
687
*
688
* @return true if the proper handshake message is the first one
689
* in the input record, false otherwise.
690
*/
691
private boolean isTlsMessage(ByteBuffer srcRecord, int reqRecType,
692
int... recParams) {
693
boolean foundMsg = false;
694
695
if (srcRecord.hasRemaining()) {
696
srcRecord.mark();
697
698
// Grab the fields from the TLS Record
699
int recordType = Byte.toUnsignedInt(srcRecord.get());
700
byte ver_major = srcRecord.get();
701
byte ver_minor = srcRecord.get();
702
int recLen = Short.toUnsignedInt(srcRecord.getShort());
703
704
if (recordType == reqRecType) {
705
// For any zero-length recParams, making sure the requested
706
// type is sufficient.
707
if (recParams.length == 0) {
708
foundMsg = true;
709
} else {
710
switch (recordType) {
711
case TLS_RECTYPE_CCS:
712
case TLS_RECTYPE_APPDATA:
713
// We really shouldn't find ourselves here, but
714
// if someone asked for these types and had more
715
// recParams we can ignore them.
716
foundMsg = true;
717
break;
718
case TLS_RECTYPE_ALERT:
719
// Needs two params, AlertLevel and AlertDescription
720
if (recParams.length != 2) {
721
throw new RuntimeException(
722
"Test for Alert requires level and desc.");
723
} else {
724
int level = Byte.toUnsignedInt(srcRecord.get());
725
int desc = Byte.toUnsignedInt(srcRecord.get());
726
if (level == recParams[0] &&
727
desc == recParams[1]) {
728
foundMsg = true;
729
}
730
}
731
break;
732
case TLS_RECTYPE_HANDSHAKE:
733
// Needs one parameter, HandshakeType
734
if (recParams.length != 1) {
735
throw new RuntimeException(
736
"Test for Handshake requires only HS type");
737
} else {
738
// Go into the first handhshake message in the
739
// record and grab the handshake message header.
740
// All we need to do is parse out the leading
741
// byte.
742
int msgHdr = srcRecord.getInt();
743
int msgType = (msgHdr >> 24) & 0x000000FF;
744
if (msgType == recParams[0]) {
745
foundMsg = true;
746
}
747
}
748
break;
749
}
750
}
751
}
752
753
srcRecord.reset();
754
}
755
756
return foundMsg;
757
}
758
759
private byte[] getHandshakeMessage(ByteBuffer srcRecord) {
760
// At the start of this routine, the position should be lined up
761
// at the first byte of a handshake message. Mark this location
762
// so we can return to it after reading the type and length.
763
srcRecord.mark();
764
int msgHdr = srcRecord.getInt();
765
int type = (msgHdr >> 24) & 0x000000FF;
766
int length = msgHdr & 0x00FFFFFF;
767
768
// Create a byte array that has enough space for the handshake
769
// message header and body.
770
byte[] data = new byte[length + 4];
771
srcRecord.reset();
772
srcRecord.get(data, 0, length + 4);
773
774
return (data);
775
}
776
777
/**
778
* Hex-dumps a ByteBuffer to stdout.
779
*/
780
private static void dumpByteBuffer(String header, ByteBuffer bBuf) {
781
if (dumpBufs == false) {
782
return;
783
}
784
785
int bufLen = bBuf.remaining();
786
if (bufLen > 0) {
787
bBuf.mark();
788
789
// We expect the position of the buffer to be at the
790
// beginning of a TLS record. Get the type, version and length.
791
int type = Byte.toUnsignedInt(bBuf.get());
792
int ver_major = Byte.toUnsignedInt(bBuf.get());
793
int ver_minor = Byte.toUnsignedInt(bBuf.get());
794
int recLen = Short.toUnsignedInt(bBuf.getShort());
795
796
log("===== " + header + " (" + tlsRecType(type) + " / " +
797
ver_major + "." + ver_minor + " / " + bufLen + " bytes) =====");
798
bBuf.reset();
799
for (int i = 0; i < bufLen; i++) {
800
if (i != 0 && i % 16 == 0) {
801
System.out.print("\n");
802
}
803
System.out.format("%02X ", bBuf.get(i));
804
}
805
log("\n===============================================");
806
bBuf.reset();
807
}
808
}
809
810
private static String tlsRecType(int type) {
811
switch (type) {
812
case 20:
813
return "Change Cipher Spec";
814
case 21:
815
return "Alert";
816
case 22:
817
return "Handshake";
818
case 23:
819
return "Application Data";
820
default:
821
return ("Unknown (" + type + ")");
822
}
823
}
824
}
825
826