"""
https://www.pyimagesearch.com/2015/04/06/zero-parameter-automatic-canny-edge-detection-with-python-and-opencv/
"""
import cv2
import numpy as np
from src.constants.image_processing import (
APPROX_POLY_EPSILON_FACTOR,
CANNY_PARAMS,
DEFAULT_CONTOUR_COLOR,
DEFAULT_CONTOUR_FILL_COLOR,
DEFAULT_CONTOUR_FILL_WIDTH,
DEFAULT_CONTOUR_LINE_WIDTH,
DEFAULT_GAUSSIAN_BLUR_KERNEL,
MAX_COSINE_THRESHOLD,
MIN_PAGE_AREA_THRESHOLD,
PAGE_THRESHOLD_PARAMS,
)
from src.logger import logger
from src.processors.interfaces.ImagePreprocessor import ImagePreprocessor
from src.utils.image import ImageUtils
from src.utils.interaction import InteractionUtils
def normalize(image):
return cv2.normalize(image, 0, 255, norm_type=cv2.NORM_MINMAX)
def check_max_cosine(approx):
max_cosine = 0
min_cosine = 1.5
for i in range(2, 5):
cosine = abs(angle(approx[i % 4], approx[i - 2], approx[i - 1]))
max_cosine = max(cosine, max_cosine)
min_cosine = min(cosine, min_cosine)
if max_cosine >= MAX_COSINE_THRESHOLD:
logger.warning("Quadrilateral is not a rectangle.")
return False
return True
def validate_rect(approx):
return len(approx) == 4 and check_max_cosine(approx.reshape(4, 2))
def angle(p_1, p_2, p_0):
dx1 = float(p_1[0] - p_0[0])
dy1 = float(p_1[1] - p_0[1])
dx2 = float(p_2[0] - p_0[0])
dy2 = float(p_2[1] - p_0[1])
return (dx1 * dx2 + dy1 * dy2) / np.sqrt(
(dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1e-10
)
class CropPage(ImagePreprocessor):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
cropping_ops = self.options
self.morph_kernel = tuple(
int(x) for x in cropping_ops.get("morphKernel", [10, 10])
)
def apply_filter(self, image, file_path):
image = normalize(cv2.GaussianBlur(image, DEFAULT_GAUSSIAN_BLUR_KERNEL, 0))
sheet = self.find_page(image, file_path)
if len(sheet) == 0:
logger.error(
f"\tError: Paper boundary not found for: '{file_path}'\nHave you accidentally included CropPage preprocessor?"
)
return None
logger.info(f"Found page corners: \t {sheet.tolist()}")
image = ImageUtils.four_point_transform(image, sheet)
return image
def find_page(self, image, file_path):
config = self.tuning_config
image = normalize(image)
_ret, image = cv2.threshold(
image,
PAGE_THRESHOLD_PARAMS["threshold_value"],
PAGE_THRESHOLD_PARAMS["max_pixel_value"],
cv2.THRESH_TRUNC,
)
image = normalize(image)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, self.morph_kernel)
closed = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
edge = cv2.Canny(
closed, CANNY_PARAMS["lower_threshold"], CANNY_PARAMS["upper_threshold"]
)
if config.outputs.show_image_level >= 5:
InteractionUtils.show("edge", edge, config=config)
cnts = ImageUtils.grab_contours(
cv2.findContours(edge, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
)
cnts = [cv2.convexHull(c) for c in cnts]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]
sheet = []
for c in cnts:
if cv2.contourArea(c) < MIN_PAGE_AREA_THRESHOLD:
continue
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(
c, epsilon=APPROX_POLY_EPSILON_FACTOR * peri, closed=True
)
if validate_rect(approx):
sheet = np.reshape(approx, (4, -1))
cv2.drawContours(
image,
[approx],
-1,
DEFAULT_CONTOUR_COLOR,
DEFAULT_CONTOUR_LINE_WIDTH,
)
cv2.drawContours(
edge,
[approx],
-1,
DEFAULT_CONTOUR_FILL_COLOR,
DEFAULT_CONTOUR_FILL_WIDTH,
)
break
return sheet