CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
amanchadha

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: amanchadha/coursera-deep-learning-specialization
Path: blob/master/C1 - Neural Networks and Deep Learning/Week 3/Planar data classification with one hidden layer/__pycache__/planar_utils.cpython-313.pyc
Views: 4883
�

u5h���H�SSKJr SSKrSSKrSSKrSSKrSrSr	Sr
Srg)�Nc�,�USSS24R5S-
USSS24R5S-pCUSSS24R5S-
USSS24R5S-peSn[R"[R"X4U5[R"XVU55up�U"[R
UR
5U	R
545n
U
RUR5n
[R"X�U
[RRS9 [R"S5 [R"S5 [R"USSS24USSS24U[RRS9 g)Nr�g{�G�z�?)�cmap�x2�x1)�cr)�min�max�np�meshgrid�arange�c_�ravel�reshape�shape�plt�contourf�cm�Spectral�ylabel�xlabel�scatter)�model�X�y�x_min�x_max�y_min�y_max�h�xx�yy�Zs           ڼ/Users/Teo/Documents/2.Queens/1.Masters/Coursera-Deep-Learning-Specialization/C1 - Neural Networks and Deep Learning/Week 3/Planar data classification with one hidden layer/planar_utils.py�plot_decision_boundaryr%s���Q��T�7�;�;�=�1�$�a��1��g�k�k�m�a�&7�5��Q��T�7�;�;�=�1�$�a��1��g�k�k�m�a�&7�5��A�
�[�[����5��3�R�Y�Y�u�Q�5O�
P�F�B�
�b�e�e�B�H�H�J����
�*�+�,�A�	�	�	�"�(�(��A��L�L��������1��J�J�t���J�J�t���K�K��!�Q�$���1�a�4��A�C�F�F�O�O�<�c�@�SS[R"U*5--nU$)zi
Compute the sigmoid of x

Arguments:
x -- A scalar or numpy array of any size.

Return:
s -- sigmoid(x)
r)r�exp)�x�ss  r$�sigmoidr+s!��	
�1�R�V�V�Q�B�Z�<��A��Hr&c���[RRS5 Sn[US-5nSn[R"X45n[R"US4SS9nSn[S5H�n[X-XS--5n[R"US-US-S-U5[RRU5S--nU[R"SU-5-[RRU5S--n	[RU	[R"U5-U	[R"U5-4X7'XdU'M� URnURnX44$)	Nri���uint8)�dtype�g�(\���@皙�����?)r�random�seed�int�zeros�range�linspace�randn�sinr�cos�T)
�m�N�Dr�Y�a�j�ix�t�rs
          r$�load_planar_datasetrE%s#���I�I�N�N�1���A��A�a�C��A�	�A�
���!���A�
���!�A��g�&�A�	�A�
�1�X��
�1�3�q�A�#�w�
���K�K��$���!��T�z�!�,�r�y�y���q�/A�#�/E�E��
�b�f�f�Q�q�S�k�M�B�I�I�O�O�A�.�s�2�2�����a����q�	�k�1�R�V�V�A�Y�;�.�/����"���	
���A�	���A��4�Kr&c
��Sn[RRUSSS9n[RRUSS9n[RR	USSS	S
9n[RRSSUSSSSS9n[RRUS5[RRUS54nXX4U4$)
N��g�?g333333�?)�	n_samples�factor�noiser1)rHrJ�r-�)rH�random_state�
n_features�centersT)�mean�covrHrN�	n_classes�shufflerM)	�sklearn�datasets�make_circles�
make_moons�
make_blobs�make_gaussian_quantilesrr2�rand)r=�
noisy_circles�noisy_moons�blobs�gaussian_quantiles�no_structures      r$�load_extra_datasetsr`:s����A��$�$�1�1�A�b�PR�1�S�M��"�"�-�-���-�D�K����'�'�!�!�PQ�[\�'�]�E� �)�)�A�A�t�QT�`a�no�{|�GK�Z^�A�_���9�9�>�>�!�Q�'�������1�)=�=�L��u�,�N�Nr&)�matplotlib.pyplot�pyplotr�numpyrrT�sklearn.datasets�sklearn.linear_modelr%r+rEr`�r&r$�<module>rgs)�������=�"
��*Or&