Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/C1 - Neural Networks and Deep Learning/Week 3/Planar data classification with one hidden layer/testCases_v2.py
Views: 4798
import numpy as np12def layer_sizes_test_case():3np.random.seed(1)4X_assess = np.random.randn(5, 3)5Y_assess = np.random.randn(2, 3)6return X_assess, Y_assess78def initialize_parameters_test_case():9n_x, n_h, n_y = 2, 4, 110return n_x, n_h, n_y111213def forward_propagation_test_case():14np.random.seed(1)15X_assess = np.random.randn(2, 3)16b1 = np.random.randn(4,1)17b2 = np.array([[ -1.3]])1819parameters = {'W1': np.array([[-0.00416758, -0.00056267],20[-0.02136196, 0.01640271],21[-0.01793436, -0.00841747],22[ 0.00502881, -0.01245288]]),23'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),24'b1': b1,25'b2': b2}2627return X_assess, parameters2829def compute_cost_test_case():30np.random.seed(1)31Y_assess = (np.random.randn(1, 3) > 0)32parameters = {'W1': np.array([[-0.00416758, -0.00056267],33[-0.02136196, 0.01640271],34[-0.01793436, -0.00841747],35[ 0.00502881, -0.01245288]]),36'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),37'b1': np.array([[ 0.],38[ 0.],39[ 0.],40[ 0.]]),41'b2': np.array([[ 0.]])}4243a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]]))4445return a2, Y_assess, parameters4647def backward_propagation_test_case():48np.random.seed(1)49X_assess = np.random.randn(2, 3)50Y_assess = (np.random.randn(1, 3) > 0)51parameters = {'W1': np.array([[-0.00416758, -0.00056267],52[-0.02136196, 0.01640271],53[-0.01793436, -0.00841747],54[ 0.00502881, -0.01245288]]),55'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),56'b1': np.array([[ 0.],57[ 0.],58[ 0.],59[ 0.]]),60'b2': np.array([[ 0.]])}6162cache = {'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619],63[-0.05225116, 0.02725659, -0.02646251],64[-0.02009721, 0.0036869 , 0.02883756],65[ 0.02152675, -0.01385234, 0.02599885]]),66'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]),67'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ],68[-0.05229879, 0.02726335, -0.02646869],69[-0.02009991, 0.00368692, 0.02884556],70[ 0.02153007, -0.01385322, 0.02600471]]),71'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])}72return parameters, cache, X_assess, Y_assess7374def update_parameters_test_case():75parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],76[-0.02311792, 0.03137121],77[-0.0169217 , -0.01752545],78[ 0.00935436, -0.05018221]]),79'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),80'b1': np.array([[ -8.97523455e-07],81[ 8.15562092e-06],82[ 6.04810633e-07],83[ -2.54560700e-06]]),84'b2': np.array([[ 9.14954378e-05]])}8586grads = {'dW1': np.array([[ 0.00023322, -0.00205423],87[ 0.00082222, -0.00700776],88[-0.00031831, 0.0028636 ],89[-0.00092857, 0.00809933]]),90'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03, -1.25683095e-03,91-2.55715317e-03]]),92'db1': np.array([[ 1.05570087e-07],93[ -3.81814487e-06],94[ -1.90155145e-07],95[ 5.46467802e-07]]),96'db2': np.array([[ -1.08923140e-05]])}97return parameters, grads9899def nn_model_test_case():100np.random.seed(1)101X_assess = np.random.randn(2, 3)102Y_assess = (np.random.randn(1, 3) > 0)103return X_assess, Y_assess104105def predict_test_case():106np.random.seed(1)107X_assess = np.random.randn(2, 3)108parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],109[-0.02311792, 0.03137121],110[-0.0169217 , -0.01752545],111[ 0.00935436, -0.05018221]]),112'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),113'b1': np.array([[ -8.97523455e-07],114[ 8.15562092e-06],115[ 6.04810633e-07],116[ -2.54560700e-06]]),117'b2': np.array([[ 9.14954378e-05]])}118return parameters, X_assess119120121