CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
amanchadha

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: amanchadha/coursera-deep-learning-specialization
Path: blob/master/C2 - Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization/Week 3/improv_utils.py
Views: 4804
1
import h5py
2
import numpy as np
3
import tensorflow as tf
4
import math
5
6
def load_dataset():
7
train_dataset = h5py.File('datasets/train_signs.h5', "r")
8
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
9
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
10
11
test_dataset = h5py.File('datasets/test_signs.h5', "r")
12
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
13
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
14
15
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
16
17
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
18
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
19
20
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
21
22
23
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
24
"""
25
Creates a list of random minibatches from (X, Y)
26
27
Arguments:
28
X -- input data, of shape (input size, number of examples)
29
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
30
mini_batch_size - size of the mini-batches, integer
31
seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
32
33
Returns:
34
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
35
"""
36
37
m = X.shape[1] # number of training examples
38
mini_batches = []
39
np.random.seed(seed)
40
41
# Step 1: Shuffle (X, Y)
42
permutation = list(np.random.permutation(m))
43
shuffled_X = X[:, permutation]
44
shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m))
45
46
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
47
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
48
for k in range(0, num_complete_minibatches):
49
mini_batch_X = shuffled_X[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
50
mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
51
mini_batch = (mini_batch_X, mini_batch_Y)
52
mini_batches.append(mini_batch)
53
54
# Handling the end case (last mini-batch < mini_batch_size)
55
if m % mini_batch_size != 0:
56
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m]
57
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
58
mini_batch = (mini_batch_X, mini_batch_Y)
59
mini_batches.append(mini_batch)
60
61
return mini_batches
62
63
def convert_to_one_hot(Y, C):
64
Y = np.eye(C)[Y.reshape(-1)].T
65
return Y
66
67
def predict(X, parameters):
68
69
W1 = tf.convert_to_tensor(parameters["W1"])
70
b1 = tf.convert_to_tensor(parameters["b1"])
71
W2 = tf.convert_to_tensor(parameters["W2"])
72
b2 = tf.convert_to_tensor(parameters["b2"])
73
W3 = tf.convert_to_tensor(parameters["W3"])
74
b3 = tf.convert_to_tensor(parameters["b3"])
75
76
params = {"W1": W1,
77
"b1": b1,
78
"W2": W2,
79
"b2": b2,
80
"W3": W3,
81
"b3": b3}
82
83
x = tf.placeholder("float", [12288, 1])
84
85
z3 = forward_propagation(x, params)
86
p = tf.argmax(z3)
87
88
with tf.Session() as sess:
89
prediction = sess.run(p, feed_dict = {x: X})
90
91
return prediction
92
93
94
def create_placeholders(n_x, n_y):
95
"""
96
Creates the placeholders for the tensorflow session.
97
98
Arguments:
99
n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288)
100
n_y -- scalar, number of classes (from 0 to 5, so -> 6)
101
102
Returns:
103
X -- placeholder for the data input, of shape [n_x, None] and dtype "float"
104
Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float"
105
106
Tips:
107
- You will use None because it let's us be flexible on the number of examples you will for the placeholders.
108
In fact, the number of examples during test/train is different.
109
"""
110
111
### START CODE HERE ### (approx. 2 lines)
112
X = tf.placeholder("float", [n_x, None])
113
Y = tf.placeholder("float", [n_y, None])
114
### END CODE HERE ###
115
116
return X, Y
117
118
119
def initialize_parameters():
120
"""
121
Initializes parameters to build a neural network with tensorflow. The shapes are:
122
W1 : [25, 12288]
123
b1 : [25, 1]
124
W2 : [12, 25]
125
b2 : [12, 1]
126
W3 : [6, 12]
127
b3 : [6, 1]
128
129
Returns:
130
parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
131
"""
132
133
tf.set_random_seed(1) # so that your "random" numbers match ours
134
135
### START CODE HERE ### (approx. 6 lines of code)
136
W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
137
b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())
138
W2 = tf.get_variable("W2", [12,25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
139
b2 = tf.get_variable("b2", [12,1], initializer = tf.zeros_initializer())
140
W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
141
b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())
142
### END CODE HERE ###
143
144
parameters = {"W1": W1,
145
"b1": b1,
146
"W2": W2,
147
"b2": b2,
148
"W3": W3,
149
"b3": b3}
150
151
return parameters
152
153
154
def compute_cost(z3, Y):
155
"""
156
Computes the cost
157
158
Arguments:
159
z3 -- output of forward propagation (output of the last LINEAR unit), of shape (10, number of examples)
160
Y -- "true" labels vector placeholder, same shape as z3
161
162
Returns:
163
cost - Tensor of the cost function
164
"""
165
166
# to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits()
167
logits = tf.transpose(z3)
168
labels = tf.transpose(Y)
169
170
### START CODE HERE ### (1 line of code)
171
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels))
172
### END CODE HERE ###
173
174
return cost
175
176
177
178
179
180
181
182
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
183
num_epochs = 1500, minibatch_size = 32, print_cost = True):
184
"""
185
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
186
187
Arguments:
188
X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
189
Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
190
X_test -- training set, of shape (input size = 12288, number of training examples = 120)
191
Y_test -- test set, of shape (output size = 6, number of test examples = 120)
192
learning_rate -- learning rate of the optimization
193
num_epochs -- number of epochs of the optimization loop
194
minibatch_size -- size of a minibatch
195
print_cost -- True to print the cost every 100 epochs
196
197
Returns:
198
parameters -- parameters learnt by the model. They can then be used to predict.
199
"""
200
201
ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
202
tf.set_random_seed(1) # to keep consistent results
203
seed = 3 # to keep consistent results
204
(n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
205
n_y = Y_train.shape[0] # n_y : output size
206
costs = [] # To keep track of the cost
207
208
# Create Placeholders of shape (n_x, n_y)
209
### START CODE HERE ### (1 line)
210
X, Y = create_placeholders(n_x, n_y)
211
### END CODE HERE ###
212
213
# Initialize parameters
214
### START CODE HERE ### (1 line)
215
parameters = initialize_parameters()
216
### END CODE HERE ###
217
218
# Forward propagation: Build the forward propagation in the tensorflow graph
219
### START CODE HERE ### (1 line)
220
z3 = forward_propagation(X, parameters)
221
### END CODE HERE ###
222
223
# Cost function: Add cost function to tensorflow graph
224
### START CODE HERE ### (1 line)
225
cost = compute_cost(z3, Y)
226
### END CODE HERE ###
227
228
# Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
229
### START CODE HERE ### (1 line)
230
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
231
### END CODE HERE ###
232
233
# Initialize all the variables
234
init = tf.global_variables_initializer()
235
236
# Start the session to compute the tensorflow graph
237
with tf.Session() as sess:
238
239
# Run the initialization
240
sess.run(init)
241
242
# Do the training loop
243
for epoch in range(num_epochs):
244
245
minibatch_cost = 0.
246
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
247
seed = seed + 1
248
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
249
250
for minibatch in minibatches:
251
252
# Select a minibatch
253
(minibatch_X, minibatch_Y) = minibatch
254
255
# IMPORTANT: The line that runs the graph on a minibatch.
256
# Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
257
### START CODE HERE ### (1 line)
258
_ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
259
### END CODE HERE ###
260
261
minibatch_cost += temp_cost / num_minibatches
262
263
# Print the cost every epoch
264
if print_cost == True and epoch % 100 == 0:
265
print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
266
if print_cost == True and epoch % 5 == 0:
267
costs.append(minibatch_cost)
268
269
# plot the cost
270
plt.plot(np.squeeze(costs))
271
plt.ylabel('cost')
272
plt.xlabel('iterations (per tens)')
273
plt.title("Learning rate =" + str(learning_rate))
274
plt.show()
275
276
# lets save the parameters in a variable
277
parameters = sess.run(parameters)
278
print ("Parameters have been trained!")
279
280
# Calculate the correct predictions
281
correct_prediction = tf.equal(tf.argmax(z3), tf.argmax(Y))
282
283
# Calculate accuracy on the test set
284
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
285
286
print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
287
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
288
289
return parameters
290