CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
amanchadha

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: amanchadha/coursera-deep-learning-specialization
Path: blob/master/C4 - Convolutional Neural Networks/Week 1/outputs.py
Views: 4802
1
zero_pad_output0 = [[[[0., 0.],
2
[0., 0.],
3
[0., 0.],
4
[0., 0.],
5
[0., 0.],
6
[0., 0.],
7
[0., 0.]],
8
9
[[0., 0.],
10
[0., 0.],
11
[0., 0.],
12
[0., 0.],
13
[0., 0.],
14
[0., 0.],
15
[0., 0.]],
16
17
[[0., 0.],
18
[0., 0.],
19
[1.62434536, -0.61175641],
20
[-0.52817175, -1.07296862],
21
[0.86540763, -2.3015387],
22
[0., 0.],
23
[0., 0.]],
24
25
[[0., 0.],
26
[0., 0.],
27
[1.74481176, -0.7612069],
28
[0.3190391, -0.24937038],
29
[1.46210794, -2.06014071],
30
[0., 0.],
31
[0., 0.]],
32
33
[[0., 0.],
34
[0., 0.],
35
[-0.3224172, -0.38405435],
36
[1.13376944, -1.09989127],
37
[-0.17242821, -0.87785842],
38
[0., 0.],
39
[0., 0.]],
40
41
[[0., 0.],
42
[0., 0.],
43
[0., 0.],
44
[0., 0.],
45
[0., 0.],
46
[0., 0.],
47
[0., 0.]],
48
49
[[0., 0.],
50
[0., 0.],
51
[0., 0.],
52
[0., 0.],
53
[0., 0.],
54
[0., 0.],
55
[0., 0.]]],
56
57
58
[[[0., 0.],
59
[0., 0.],
60
[0., 0.],
61
[0., 0.],
62
[0., 0.],
63
[0., 0.],
64
[0., 0.]],
65
66
[[0., 0.],
67
[0., 0.],
68
[0., 0.],
69
[0., 0.],
70
[0., 0.],
71
[0., 0.],
72
[0., 0.]],
73
74
[[0., 0.],
75
[0., 0.],
76
[0.04221375, 0.58281521],
77
[-1.10061918, 1.14472371],
78
[0.90159072, 0.50249434],
79
[0., 0.],
80
[0., 0.]],
81
82
[[0., 0.],
83
[0., 0.],
84
[0.90085595, -0.68372786],
85
[-0.12289023, -0.93576943],
86
[-0.26788808, 0.53035547],
87
[0., 0.],
88
[0., 0.]],
89
90
[[0., 0.],
91
[0., 0.],
92
[-0.69166075, -0.39675353],
93
[-0.6871727, -0.84520564],
94
[-0.67124613, -0.0126646],
95
[0., 0.],
96
[0., 0.]],
97
98
[[0., 0.],
99
[0., 0.],
100
[0., 0.],
101
[0., 0.],
102
[0., 0.],
103
[0., 0.],
104
[0., 0.]],
105
106
[[0., 0.],
107
[0., 0.],
108
[0., 0.],
109
[0., 0.],
110
[0., 0.],
111
[0., 0.],
112
[0., 0.]]],
113
114
115
[[[0., 0.],
116
[0., 0.],
117
[0., 0.],
118
[0., 0.],
119
[0., 0.],
120
[0., 0.],
121
[0., 0.]],
122
123
[[0., 0.],
124
[0., 0.],
125
[0., 0.],
126
[0., 0.],
127
[0., 0.],
128
[0., 0.],
129
[0., 0.]],
130
131
[[0., 0.],
132
[0., 0.],
133
[-1.11731035, 0.2344157],
134
[1.65980218, 0.74204416],
135
[-0.19183555, -0.88762896],
136
[0., 0.],
137
[0., 0.]],
138
139
[[0., 0.],
140
[0., 0.],
141
[-0.74715829, 1.6924546],
142
[0.05080775, -0.63699565],
143
[0.19091548, 2.10025514],
144
[0., 0.],
145
[0., 0.]],
146
147
[[0., 0.],
148
[0., 0.],
149
[0.12015895, 0.61720311],
150
[0.30017032, -0.35224985],
151
[-1.1425182, -0.34934272],
152
[0., 0.],
153
[0., 0.]],
154
155
[[0., 0.],
156
[0., 0.],
157
[0., 0.],
158
[0., 0.],
159
[0., 0.],
160
[0., 0.],
161
[0., 0.]],
162
163
[[0., 0.],
164
[0., 0.],
165
[0., 0.],
166
[0., 0.],
167
[0., 0.],
168
[0., 0.],
169
[0., 0.]]],
170
171
172
[[[0., 0.],
173
[0., 0.],
174
[0., 0.],
175
[0., 0.],
176
[0., 0.],
177
[0., 0.],
178
[0., 0.]],
179
180
[[0., 0.],
181
[0., 0.],
182
[0., 0.],
183
[0., 0.],
184
[0., 0.],
185
[0., 0.],
186
[0., 0.]],
187
188
[[0., 0.],
189
[0., 0.],
190
[-0.20889423, 0.58662319],
191
[0.83898341, 0.93110208],
192
[0.28558733, 0.88514116],
193
[0., 0.],
194
[0., 0.]],
195
196
[[0., 0.],
197
[0., 0.],
198
[-0.75439794, 1.25286816],
199
[0.51292982, -0.29809284],
200
[0.48851815, -0.07557171],
201
[0., 0.],
202
[0., 0.]],
203
204
[[0., 0.],
205
[0., 0.],
206
[1.13162939, 1.51981682],
207
[2.18557541, -1.39649634],
208
[-1.44411381, -0.50446586],
209
[0., 0.],
210
[0., 0.]],
211
212
[[0., 0.],
213
[0., 0.],
214
[0., 0.],
215
[0., 0.],
216
[0., 0.],
217
[0., 0.],
218
[0., 0.]],
219
220
[[0., 0.],
221
[0., 0.],
222
[0., 0.],
223
[0., 0.],
224
[0., 0.],
225
[0., 0.],
226
[0., 0.]]]]
227
conv_forward_output0 = [[[[-2.65112363, -0.37849177, -1.97054929, -1.96235299,
228
-1.72259872, 0.4676693, -6.43434016, 1.10764994],
229
[4.67692928, 4.29865415, -1.3608031, 0.80532859,
230
-2.88480108, 8.95280034, 5.32627807, -1.82635258],
231
[-2.05881174, 3.40859795, 0.3502282, 0.68303626,
232
-1.88328065, -1.87480174, 5.8008721, 0.0700918],
233
[-3.50141791, 2.704286, 0.28341346, 4.15637411,
234
-0.46575834, -0.43668824, -5.56866106, 1.72288033]],
235
236
[[-2.32126108, 0.91040602, 2.31852532, 0.98842271,
237
3.31716611, 4.05638832, -2.48135123, 0.95872443],
238
[6.03978907, -6.96477888, -1.20799344, 2.68913374,
239
-4.35744033, 10.59355329, 3.20856901, 13.98735978],
240
[-3.01280755, -2.90226517, -8.34171936, -5.26220853,
241
5.6630696, 1.08704033, 2.20430705, -10.73218294],
242
[-6.24198266, -0.53158832, -3.29654954, -1.81865997,
243
0.59196322, 2.51134745, -4.24924673, 5.21936641]],
244
245
[[-2.22187412, -0.95259173, -5.99441273, 0.79147932,
246
1.16919278, -0.17321161, -3.26346299, -3.62407578],
247
[-2.17796037, 8.07171329, -0.5772704, 3.36286738,
248
4.48113645, -2.89198428, 10.99288867, 3.03171932],
249
[-12.49991261, 5.26845833, -1.67648614, -8.65695762,
250
-10.68157258, 6.71492428, 2.83839971, 4.47259772],
251
[0.11421092, -1.90872424, -3.28117601, 0.89922467,
252
0.83985348, -0.25127044, -0.94409718, 5.17244412]]],
253
254
255
[[[1.97649814, 2.76743075, -6.39611007, 2.95378171,
256
-0.81235239, -0.53333631, 0.71268871, 4.91385105],
257
[-5.14401869, 6.97041391, -4.53976469, 5.89092653,
258
-5.74606931, 2.74256558, 3.02124802, -10.04187592],
259
[5.53871187, -8.55886701, -4.70962135, 2.55966738,
260
-2.66959504, 5.60010695, -8.37253342, 4.18848278],
261
[0.63364517, -3.71848223, -3.67072772, 4.34226476,
262
-1.21894465, 3.68929452, 5.89166305, 0.94256457]],
263
264
[[2.36049402, -3.09696204, 8.33521755, 3.04680748,
265
3.7964542, 0.66488788, 1.9935476, 1.54396221],
266
[-7.73457048, 0.287562, 7.97481218, 3.32415996,
267
-4.07121488, 2.69182963, 4.1356109, -5.16178423],
268
[-6.95635186, -0.10924121, -4.12526441, 0.62578199,
269
4.69492086, -3.52748877, 3.63168271, 0.64007629],
270
[7.94980014, 5.71855659, 3.49970333, 12.7718152,
271
8.84959478, 2.37150319, -1.42531648, -0.51126641]],
272
273
[[-5.29658283, -4.20466999, -6.63067766, -9.87831724,
274
-5.32130395, 7.32417919, 2.96011091, 7.60669481],
275
[11.54630784, -1.93157244, 2.26699242, 7.62184275,
276
5.40584348, -2.88837958, -1.46981877, 7.91314719],
277
[5.94067877, 3.50739649, 0.82512202, 4.80655489,
278
-4.1044945, 4.14358541, 0.13194885, 4.35397285],
279
[4.91298364, -1.44499772, 5.9392078, -3.92690408,
280
2.12840309, 1.27237402, 1.56992581, 0.44270565]]]]
281
282
pool_forward_output0 = [[[[1.74481176, 0.90159072, 1.65980218],
283
[1.74481176, 1.46210794, 1.65980218],
284
[1.74481176, 1.6924546, 1.65980218]],
285
286
[[1.14472371, 0.90159072, 2.10025514],
287
[1.14472371, 0.90159072, 1.65980218],
288
[1.14472371, 1.6924546, 1.65980218]],
289
290
[[1.13162939, 1.51981682, 2.18557541],
291
[1.13162939, 1.51981682, 2.18557541],
292
[1.13162939, 1.6924546, 2.18557541]]],
293
294
295
[[[1.19891788, 0.84616065, 0.82797464],
296
[0.69803203, 0.84616065, 1.2245077],
297
[0.69803203, 1.12141771, 1.2245077]],
298
299
[[1.96710175, 0.84616065, 1.27375593],
300
[1.96710175, 0.84616065, 1.23616403],
301
[1.62765075, 1.12141771, 1.2245077]],
302
303
[[1.96710175, 0.86888616, 1.27375593],
304
[1.96710175, 0.86888616, 1.23616403],
305
[1.62765075, 1.12141771, 0.79280687]]]]
306
307
pool_forward_output1 = [[[[-3.01046719e-02, -3.24021315e-03, -3.36298859e-01],
308
[1.43310483e-01, 1.93146751e-01, -
309
4.44905196e-01],
310
[1.28934436e-01, 2.22428468e-01, 1.25067597e-01]],
311
312
[[-3.81801899e-01, 1.59993515e-02, 1.70562706e-01],
313
[4.73707165e-02, 2.59244658e-02,
314
9.20338402e-02],
315
[3.97048605e-02, 1.57189094e-01, 3.45302489e-01]],
316
317
[[-3.82680519e-01, 2.32579951e-01, 6.25997903e-01],
318
[-2.47157416e-01, -3.48524998e-04,
319
3.50539717e-01],
320
[-9.52551510e-02, 2.68511000e-01, 4.66056368e-01]]],
321
322
323
[[[-1.73134159e-01, 3.23771981e-01, -3.43175716e-01],
324
[3.80634669e-02, 7.26706274e-02, -
325
2.30268958e-01],
326
[2.03009393e-02, 1.41414785e-01, -1.23158476e-02]],
327
328
[[4.44976963e-01, -2.61694592e-03, -3.10403073e-01],
329
[5.08114737e-01, -
330
2.34937338e-01, -2.39611830e-01],
331
[1.18726772e-01, 1.72552294e-01, -2.21121966e-01]],
332
333
[[4.29449255e-01, 8.44699612e-02, -2.72909051e-01],
334
[6.76351685e-01, -
335
1.20138225e-01, -2.44076712e-01],
336
[1.50774518e-01, 2.89111751e-01, 1.23238536e-03]]]]
337