Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/C4 - Convolutional Neural Networks/Week 3/Image Segmentation Unet/outputs.py
Views: 4818
unet_model_output = [['InputLayer', [(None, 96, 128, 3)], 0],1['Conv2D', (None, 96, 128, 32), 896, 'same', 'relu', 'HeNormal'],2['Conv2D', (None, 96, 128, 32), 9248, 'same', 'relu', 'HeNormal'],3['MaxPooling2D', (None, 48, 64, 32), 0, (2, 2)],4['Conv2D', (None, 48, 64, 64), 18496, 'same', 'relu', 'HeNormal'],5['Conv2D', (None, 48, 64, 64), 36928, 'same', 'relu', 'HeNormal'],6['MaxPooling2D', (None, 24, 32, 64), 0, (2, 2)],7['Conv2D', (None, 24, 32, 128), 73856, 'same', 'relu', 'HeNormal'],8['Conv2D', (None, 24, 32, 128), 147584, 'same', 'relu', 'HeNormal'],9['MaxPooling2D', (None, 12, 16, 128), 0, (2, 2)],10['Conv2D', (None, 12, 16, 256), 295168, 'same', 'relu', 'HeNormal'],11['Conv2D', (None, 12, 16, 256), 590080, 'same', 'relu', 'HeNormal'],12['Dropout', (None, 12, 16, 256), 0, 0.3],13['MaxPooling2D', (None, 6, 8, 256), 0, (2, 2)],14['Conv2D', (None, 6, 8, 512), 1180160, 'same', 'relu', 'HeNormal'],15['Conv2D', (None, 6, 8, 512), 2359808, 'same', 'relu', 'HeNormal'],16['Dropout', (None, 6, 8, 512), 0, 0.3],17['Conv2DTranspose', (None, 12, 16, 256), 1179904],18['Concatenate', (None, 12, 16, 512), 0],19['Conv2D', (None, 12, 16, 256), 1179904, 'same', 'relu', 'HeNormal'],20['Conv2D', (None, 12, 16, 256), 590080, 'same', 'relu', 'HeNormal'],21['Conv2DTranspose', (None, 24, 32, 128), 295040],22['Concatenate', (None, 24, 32, 256), 0],23['Conv2D', (None, 24, 32, 128), 295040, 'same', 'relu', 'HeNormal'],24['Conv2D', (None, 24, 32, 128), 147584, 'same', 'relu', 'HeNormal'],25['Conv2DTranspose', (None, 48, 64, 64), 73792],26['Concatenate', (None, 48, 64, 128), 0],27['Conv2D', (None, 48, 64, 64), 73792, 'same', 'relu', 'HeNormal'],28['Conv2D', (None, 48, 64, 64), 36928, 'same', 'relu', 'HeNormal'],29['Conv2DTranspose', (None, 96, 128, 32), 18464],30['Concatenate', (None, 96, 128, 64), 0],31['Conv2D', (None, 96, 128, 32), 18464, 'same', 'relu', 'HeNormal'],32['Conv2D', (None, 96, 128, 32), 9248, 'same', 'relu', 'HeNormal'],33['Conv2D', (None, 96, 128, 32), 9248, 'same', 'relu', 'HeNormal'],34['Conv2D', (None, 96, 128, 23), 759, 'same', 'linear', 'GlorotUniform']]3536