CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
amanchadha

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: amanchadha/coursera-deep-learning-specialization
Path: blob/master/C4 - Convolutional Neural Networks/Week 3/Image Segmentation Unet/outputs.py
Views: 4818
1
unet_model_output = [['InputLayer', [(None, 96, 128, 3)], 0],
2
['Conv2D', (None, 96, 128, 32), 896, 'same', 'relu', 'HeNormal'],
3
['Conv2D', (None, 96, 128, 32), 9248, 'same', 'relu', 'HeNormal'],
4
['MaxPooling2D', (None, 48, 64, 32), 0, (2, 2)],
5
['Conv2D', (None, 48, 64, 64), 18496, 'same', 'relu', 'HeNormal'],
6
['Conv2D', (None, 48, 64, 64), 36928, 'same', 'relu', 'HeNormal'],
7
['MaxPooling2D', (None, 24, 32, 64), 0, (2, 2)],
8
['Conv2D', (None, 24, 32, 128), 73856, 'same', 'relu', 'HeNormal'],
9
['Conv2D', (None, 24, 32, 128), 147584, 'same', 'relu', 'HeNormal'],
10
['MaxPooling2D', (None, 12, 16, 128), 0, (2, 2)],
11
['Conv2D', (None, 12, 16, 256), 295168, 'same', 'relu', 'HeNormal'],
12
['Conv2D', (None, 12, 16, 256), 590080, 'same', 'relu', 'HeNormal'],
13
['Dropout', (None, 12, 16, 256), 0, 0.3],
14
['MaxPooling2D', (None, 6, 8, 256), 0, (2, 2)],
15
['Conv2D', (None, 6, 8, 512), 1180160, 'same', 'relu', 'HeNormal'],
16
['Conv2D', (None, 6, 8, 512), 2359808, 'same', 'relu', 'HeNormal'],
17
['Dropout', (None, 6, 8, 512), 0, 0.3],
18
['Conv2DTranspose', (None, 12, 16, 256), 1179904],
19
['Concatenate', (None, 12, 16, 512), 0],
20
['Conv2D', (None, 12, 16, 256), 1179904, 'same', 'relu', 'HeNormal'],
21
['Conv2D', (None, 12, 16, 256), 590080, 'same', 'relu', 'HeNormal'],
22
['Conv2DTranspose', (None, 24, 32, 128), 295040],
23
['Concatenate', (None, 24, 32, 256), 0],
24
['Conv2D', (None, 24, 32, 128), 295040, 'same', 'relu', 'HeNormal'],
25
['Conv2D', (None, 24, 32, 128), 147584, 'same', 'relu', 'HeNormal'],
26
['Conv2DTranspose', (None, 48, 64, 64), 73792],
27
['Concatenate', (None, 48, 64, 128), 0],
28
['Conv2D', (None, 48, 64, 64), 73792, 'same', 'relu', 'HeNormal'],
29
['Conv2D', (None, 48, 64, 64), 36928, 'same', 'relu', 'HeNormal'],
30
['Conv2DTranspose', (None, 96, 128, 32), 18464],
31
['Concatenate', (None, 96, 128, 64), 0],
32
['Conv2D', (None, 96, 128, 32), 18464, 'same', 'relu', 'HeNormal'],
33
['Conv2D', (None, 96, 128, 32), 9248, 'same', 'relu', 'HeNormal'],
34
['Conv2D', (None, 96, 128, 32), 9248, 'same', 'relu', 'HeNormal'],
35
['Conv2D', (None, 96, 128, 23), 759, 'same', 'linear', 'GlorotUniform']]
36