Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/C5 - Sequence Models/Week 1/Building a Recurrent Neural Network - Step by Step/utils.py
Views: 4819
import numpy as np12def softmax(x):3e_x = np.exp(x - np.max(x))4return e_x / e_x.sum(axis=0)56def smooth(loss, cur_loss):7return loss * 0.999 + cur_loss * 0.00189def print_sample(sample_ix, ix_to_char):10txt = ''.join(ix_to_char[ix] for ix in sample_ix)11print ('----\n %s \n----' % (txt, ))1213def get_initial_loss(vocab_size, seq_length):14return -np.log(1.0/vocab_size)*seq_length1516def softmax(x):17e_x = np.exp(x - np.max(x))18return e_x / e_x.sum(axis=0)1920def initialize_parameters(n_a, n_x, n_y):21"""22Initialize parameters with small random values2324Returns:25parameters -- python dictionary containing:26Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)27Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)28Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)29b -- Bias, numpy array of shape (n_a, 1)30by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)31"""32np.random.seed(1)33Wax = np.random.randn(n_a, n_x)*0.01 # input to hidden34Waa = np.random.randn(n_a, n_a)*0.01 # hidden to hidden35Wya = np.random.randn(n_y, n_a)*0.01 # hidden to output36b = np.zeros((n_a, 1)) # hidden bias37by = np.zeros((n_y, 1)) # output bias3839parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "b": b,"by": by}4041return parameters4243def rnn_step_forward(parameters, a_prev, x):4445Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']46a_next = np.tanh(np.dot(Wax, x) + np.dot(Waa, a_prev) + b) # hidden state47p_t = softmax(np.dot(Wya, a_next) + by) # unnormalized log probabilities for next chars # probabilities for next chars4849return a_next, p_t5051def rnn_step_backward(dy, gradients, parameters, x, a, a_prev):5253gradients['dWya'] += np.dot(dy, a.T)54gradients['dby'] += dy55da = np.dot(parameters['Wya'].T, dy) + gradients['da_next'] # backprop into h56daraw = (1 - a * a) * da # backprop through tanh nonlinearity57gradients['db'] += daraw58gradients['dWax'] += np.dot(daraw, x.T)59gradients['dWaa'] += np.dot(daraw, a_prev.T)60gradients['da_next'] = np.dot(parameters['Waa'].T, daraw)61return gradients6263def update_parameters(parameters, gradients, lr):6465parameters['Wax'] += -lr * gradients['dWax']66parameters['Waa'] += -lr * gradients['dWaa']67parameters['Wya'] += -lr * gradients['dWya']68parameters['b'] += -lr * gradients['db']69parameters['by'] += -lr * gradients['dby']70return parameters7172def rnn_forward(X, Y, a0, parameters, vocab_size = 71):7374# Initialize x, a and y_hat as empty dictionaries75x, a, y_hat = {}, {}, {}7677a[-1] = np.copy(a0)7879# initialize your loss to 080loss = 08182for t in range(len(X)):8384# Set x[t] to be the one-hot vector representation of the t'th character in X.85x[t] = np.zeros((vocab_size,1))86x[t][X[t]] = 18788# Run one step forward of the RNN89a[t], y_hat[t] = rnn_step_forward(parameters, a[t-1], x[t])9091# Update the loss by substracting the cross-entropy term of this time-step from it.92loss -= np.log(y_hat[t][Y[t],0])9394cache = (y_hat, a, x)9596return loss, cache9798def rnn_backward(X, Y, parameters, cache):99# Initialize gradients as an empty dictionary100gradients = {}101102# Retrieve from cache and parameters103(y_hat, a, x) = cache104Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']105106# each one should be initialized to zeros of the same dimension as its corresponding parameter107gradients['dWax'], gradients['dWaa'], gradients['dWya'] = np.zeros_like(Wax), np.zeros_like(Waa), np.zeros_like(Wya)108gradients['db'], gradients['dby'] = np.zeros_like(b), np.zeros_like(by)109gradients['da_next'] = np.zeros_like(a[0])110111### START CODE HERE ###112# Backpropagate through time113for t in reversed(range(len(X))):114dy = np.copy(y_hat[t])115dy[Y[t]] -= 1116gradients = rnn_step_backward(dy, gradients, parameters, x[t], a[t], a[t-1])117### END CODE HERE ###118119return gradients, a120121