Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/examples/games/breakout.rs
6849 views
1
//! A simplified implementation of the classic game "Breakout".
2
//!
3
//! Demonstrates Bevy's stepping capabilities if compiled with the `bevy_debug_stepping` feature.
4
5
use bevy::{
6
math::bounding::{Aabb2d, BoundingCircle, BoundingVolume, IntersectsVolume},
7
prelude::*,
8
};
9
10
mod stepping;
11
12
// These constants are defined in `Transform` units.
13
// Using the default 2D camera they correspond 1:1 with screen pixels.
14
const PADDLE_SIZE: Vec2 = Vec2::new(120.0, 20.0);
15
const GAP_BETWEEN_PADDLE_AND_FLOOR: f32 = 60.0;
16
const PADDLE_SPEED: f32 = 500.0;
17
// How close can the paddle get to the wall
18
const PADDLE_PADDING: f32 = 10.0;
19
20
// We set the z-value of the ball to 1 so it renders on top in the case of overlapping sprites.
21
const BALL_STARTING_POSITION: Vec3 = Vec3::new(0.0, -50.0, 1.0);
22
const BALL_DIAMETER: f32 = 30.;
23
const BALL_SPEED: f32 = 400.0;
24
const INITIAL_BALL_DIRECTION: Vec2 = Vec2::new(0.5, -0.5);
25
26
const WALL_THICKNESS: f32 = 10.0;
27
// x coordinates
28
const LEFT_WALL: f32 = -450.;
29
const RIGHT_WALL: f32 = 450.;
30
// y coordinates
31
const BOTTOM_WALL: f32 = -300.;
32
const TOP_WALL: f32 = 300.;
33
34
const BRICK_SIZE: Vec2 = Vec2::new(100., 30.);
35
// These values are exact
36
const GAP_BETWEEN_PADDLE_AND_BRICKS: f32 = 270.0;
37
const GAP_BETWEEN_BRICKS: f32 = 5.0;
38
// These values are lower bounds, as the number of bricks is computed
39
const GAP_BETWEEN_BRICKS_AND_CEILING: f32 = 20.0;
40
const GAP_BETWEEN_BRICKS_AND_SIDES: f32 = 20.0;
41
42
const SCOREBOARD_FONT_SIZE: f32 = 33.0;
43
const SCOREBOARD_TEXT_PADDING: Val = Val::Px(5.0);
44
45
const BACKGROUND_COLOR: Color = Color::srgb(0.9, 0.9, 0.9);
46
const PADDLE_COLOR: Color = Color::srgb(0.3, 0.3, 0.7);
47
const BALL_COLOR: Color = Color::srgb(1.0, 0.5, 0.5);
48
const BRICK_COLOR: Color = Color::srgb(0.5, 0.5, 1.0);
49
const WALL_COLOR: Color = Color::srgb(0.8, 0.8, 0.8);
50
const TEXT_COLOR: Color = Color::srgb(0.5, 0.5, 1.0);
51
const SCORE_COLOR: Color = Color::srgb(1.0, 0.5, 0.5);
52
53
fn main() {
54
App::new()
55
.add_plugins(DefaultPlugins)
56
.add_plugins(
57
stepping::SteppingPlugin::default()
58
.add_schedule(Update)
59
.add_schedule(FixedUpdate)
60
.at(percent(35), percent(50)),
61
)
62
.insert_resource(Score(0))
63
.insert_resource(ClearColor(BACKGROUND_COLOR))
64
.add_systems(Startup, setup)
65
// Add our gameplay simulation systems to the fixed timestep schedule
66
// which runs at 64 Hz by default
67
.add_systems(
68
FixedUpdate,
69
(apply_velocity, move_paddle, check_for_collisions)
70
// `chain`ing systems together runs them in order
71
.chain(),
72
)
73
.add_systems(Update, update_scoreboard)
74
.add_observer(play_collision_sound)
75
.run();
76
}
77
78
#[derive(Component)]
79
struct Paddle;
80
81
#[derive(Component)]
82
struct Ball;
83
84
#[derive(Component, Deref, DerefMut)]
85
struct Velocity(Vec2);
86
87
#[derive(Event)]
88
struct BallCollided;
89
90
#[derive(Component)]
91
struct Brick;
92
93
#[derive(Resource, Deref)]
94
struct CollisionSound(Handle<AudioSource>);
95
96
// Default must be implemented to define this as a required component for the Wall component below
97
#[derive(Component, Default)]
98
struct Collider;
99
100
// This is a collection of the components that define a "Wall" in our game
101
#[derive(Component)]
102
#[require(Sprite, Transform, Collider)]
103
struct Wall;
104
105
/// Which side of the arena is this wall located on?
106
enum WallLocation {
107
Left,
108
Right,
109
Bottom,
110
Top,
111
}
112
113
impl WallLocation {
114
/// Location of the *center* of the wall, used in `transform.translation()`
115
fn position(&self) -> Vec2 {
116
match self {
117
WallLocation::Left => Vec2::new(LEFT_WALL, 0.),
118
WallLocation::Right => Vec2::new(RIGHT_WALL, 0.),
119
WallLocation::Bottom => Vec2::new(0., BOTTOM_WALL),
120
WallLocation::Top => Vec2::new(0., TOP_WALL),
121
}
122
}
123
124
/// (x, y) dimensions of the wall, used in `transform.scale()`
125
fn size(&self) -> Vec2 {
126
let arena_height = TOP_WALL - BOTTOM_WALL;
127
let arena_width = RIGHT_WALL - LEFT_WALL;
128
// Make sure we haven't messed up our constants
129
assert!(arena_height > 0.0);
130
assert!(arena_width > 0.0);
131
132
match self {
133
WallLocation::Left | WallLocation::Right => {
134
Vec2::new(WALL_THICKNESS, arena_height + WALL_THICKNESS)
135
}
136
WallLocation::Bottom | WallLocation::Top => {
137
Vec2::new(arena_width + WALL_THICKNESS, WALL_THICKNESS)
138
}
139
}
140
}
141
}
142
143
impl Wall {
144
// This "builder method" allows us to reuse logic across our wall entities,
145
// making our code easier to read and less prone to bugs when we change the logic
146
// Notice the use of Sprite and Transform alongside Wall, overwriting the default values defined for the required components
147
fn new(location: WallLocation) -> (Wall, Sprite, Transform) {
148
(
149
Wall,
150
Sprite::from_color(WALL_COLOR, Vec2::ONE),
151
Transform {
152
// We need to convert our Vec2 into a Vec3, by giving it a z-coordinate
153
// This is used to determine the order of our sprites
154
translation: location.position().extend(0.0),
155
// The z-scale of 2D objects must always be 1.0,
156
// or their ordering will be affected in surprising ways.
157
// See https://github.com/bevyengine/bevy/issues/4149
158
scale: location.size().extend(1.0),
159
..default()
160
},
161
)
162
}
163
}
164
165
// This resource tracks the game's score
166
#[derive(Resource, Deref, DerefMut)]
167
struct Score(usize);
168
169
#[derive(Component)]
170
struct ScoreboardUi;
171
172
// Add the game's entities to our world
173
fn setup(
174
mut commands: Commands,
175
mut meshes: ResMut<Assets<Mesh>>,
176
mut materials: ResMut<Assets<ColorMaterial>>,
177
asset_server: Res<AssetServer>,
178
) {
179
// Camera
180
commands.spawn(Camera2d);
181
182
// Sound
183
let ball_collision_sound = asset_server.load("sounds/breakout_collision.ogg");
184
commands.insert_resource(CollisionSound(ball_collision_sound));
185
186
// Paddle
187
let paddle_y = BOTTOM_WALL + GAP_BETWEEN_PADDLE_AND_FLOOR;
188
189
commands.spawn((
190
Sprite::from_color(PADDLE_COLOR, Vec2::ONE),
191
Transform {
192
translation: Vec3::new(0.0, paddle_y, 0.0),
193
scale: PADDLE_SIZE.extend(1.0),
194
..default()
195
},
196
Paddle,
197
Collider,
198
));
199
200
// Ball
201
commands.spawn((
202
Mesh2d(meshes.add(Circle::default())),
203
MeshMaterial2d(materials.add(BALL_COLOR)),
204
Transform::from_translation(BALL_STARTING_POSITION)
205
.with_scale(Vec2::splat(BALL_DIAMETER).extend(1.)),
206
Ball,
207
Velocity(INITIAL_BALL_DIRECTION.normalize() * BALL_SPEED),
208
));
209
210
// Scoreboard
211
commands.spawn((
212
Text::new("Score: "),
213
TextFont {
214
font_size: SCOREBOARD_FONT_SIZE,
215
..default()
216
},
217
TextColor(TEXT_COLOR),
218
ScoreboardUi,
219
Node {
220
position_type: PositionType::Absolute,
221
top: SCOREBOARD_TEXT_PADDING,
222
left: SCOREBOARD_TEXT_PADDING,
223
..default()
224
},
225
children![(
226
TextSpan::default(),
227
TextFont {
228
font_size: SCOREBOARD_FONT_SIZE,
229
..default()
230
},
231
TextColor(SCORE_COLOR),
232
)],
233
));
234
235
// Walls
236
commands.spawn(Wall::new(WallLocation::Left));
237
commands.spawn(Wall::new(WallLocation::Right));
238
commands.spawn(Wall::new(WallLocation::Bottom));
239
commands.spawn(Wall::new(WallLocation::Top));
240
241
// Bricks
242
let total_width_of_bricks = (RIGHT_WALL - LEFT_WALL) - 2. * GAP_BETWEEN_BRICKS_AND_SIDES;
243
let bottom_edge_of_bricks = paddle_y + GAP_BETWEEN_PADDLE_AND_BRICKS;
244
let total_height_of_bricks = TOP_WALL - bottom_edge_of_bricks - GAP_BETWEEN_BRICKS_AND_CEILING;
245
246
assert!(total_width_of_bricks > 0.0);
247
assert!(total_height_of_bricks > 0.0);
248
249
// Given the space available, compute how many rows and columns of bricks we can fit
250
let n_columns = (total_width_of_bricks / (BRICK_SIZE.x + GAP_BETWEEN_BRICKS)).floor() as usize;
251
let n_rows = (total_height_of_bricks / (BRICK_SIZE.y + GAP_BETWEEN_BRICKS)).floor() as usize;
252
let n_vertical_gaps = n_columns - 1;
253
254
// Because we need to round the number of columns,
255
// the space on the top and sides of the bricks only captures a lower bound, not an exact value
256
let center_of_bricks = (LEFT_WALL + RIGHT_WALL) / 2.0;
257
let left_edge_of_bricks = center_of_bricks
258
// Space taken up by the bricks
259
- (n_columns as f32 / 2.0 * BRICK_SIZE.x)
260
// Space taken up by the gaps
261
- n_vertical_gaps as f32 / 2.0 * GAP_BETWEEN_BRICKS;
262
263
// In Bevy, the `translation` of an entity describes the center point,
264
// not its bottom-left corner
265
let offset_x = left_edge_of_bricks + BRICK_SIZE.x / 2.;
266
let offset_y = bottom_edge_of_bricks + BRICK_SIZE.y / 2.;
267
268
for row in 0..n_rows {
269
for column in 0..n_columns {
270
let brick_position = Vec2::new(
271
offset_x + column as f32 * (BRICK_SIZE.x + GAP_BETWEEN_BRICKS),
272
offset_y + row as f32 * (BRICK_SIZE.y + GAP_BETWEEN_BRICKS),
273
);
274
275
// brick
276
commands.spawn((
277
Sprite {
278
color: BRICK_COLOR,
279
..default()
280
},
281
Transform {
282
translation: brick_position.extend(0.0),
283
scale: Vec3::new(BRICK_SIZE.x, BRICK_SIZE.y, 1.0),
284
..default()
285
},
286
Brick,
287
Collider,
288
));
289
}
290
}
291
}
292
293
fn move_paddle(
294
keyboard_input: Res<ButtonInput<KeyCode>>,
295
mut paddle_transform: Single<&mut Transform, With<Paddle>>,
296
time: Res<Time>,
297
) {
298
let mut direction = 0.0;
299
300
if keyboard_input.pressed(KeyCode::ArrowLeft) {
301
direction -= 1.0;
302
}
303
304
if keyboard_input.pressed(KeyCode::ArrowRight) {
305
direction += 1.0;
306
}
307
308
// Calculate the new horizontal paddle position based on player input
309
let new_paddle_position =
310
paddle_transform.translation.x + direction * PADDLE_SPEED * time.delta_secs();
311
312
// Update the paddle position,
313
// making sure it doesn't cause the paddle to leave the arena
314
let left_bound = LEFT_WALL + WALL_THICKNESS / 2.0 + PADDLE_SIZE.x / 2.0 + PADDLE_PADDING;
315
let right_bound = RIGHT_WALL - WALL_THICKNESS / 2.0 - PADDLE_SIZE.x / 2.0 - PADDLE_PADDING;
316
317
paddle_transform.translation.x = new_paddle_position.clamp(left_bound, right_bound);
318
}
319
320
fn apply_velocity(mut query: Query<(&mut Transform, &Velocity)>, time: Res<Time>) {
321
for (mut transform, velocity) in &mut query {
322
transform.translation.x += velocity.x * time.delta_secs();
323
transform.translation.y += velocity.y * time.delta_secs();
324
}
325
}
326
327
fn update_scoreboard(
328
score: Res<Score>,
329
score_root: Single<Entity, (With<ScoreboardUi>, With<Text>)>,
330
mut writer: TextUiWriter,
331
) {
332
*writer.text(*score_root, 1) = score.to_string();
333
}
334
335
fn check_for_collisions(
336
mut commands: Commands,
337
mut score: ResMut<Score>,
338
ball_query: Single<(&mut Velocity, &Transform), With<Ball>>,
339
collider_query: Query<(Entity, &Transform, Option<&Brick>), With<Collider>>,
340
) {
341
let (mut ball_velocity, ball_transform) = ball_query.into_inner();
342
343
for (collider_entity, collider_transform, maybe_brick) in &collider_query {
344
let collision = ball_collision(
345
BoundingCircle::new(ball_transform.translation.truncate(), BALL_DIAMETER / 2.),
346
Aabb2d::new(
347
collider_transform.translation.truncate(),
348
collider_transform.scale.truncate() / 2.,
349
),
350
);
351
352
if let Some(collision) = collision {
353
// Trigger observers of the "BallCollided" event
354
commands.trigger(BallCollided);
355
356
// Bricks should be despawned and increment the scoreboard on collision
357
if maybe_brick.is_some() {
358
commands.entity(collider_entity).despawn();
359
**score += 1;
360
}
361
362
// Reflect the ball's velocity when it collides
363
let mut reflect_x = false;
364
let mut reflect_y = false;
365
366
// Reflect only if the velocity is in the opposite direction of the collision
367
// This prevents the ball from getting stuck inside the bar
368
match collision {
369
Collision::Left => reflect_x = ball_velocity.x > 0.0,
370
Collision::Right => reflect_x = ball_velocity.x < 0.0,
371
Collision::Top => reflect_y = ball_velocity.y < 0.0,
372
Collision::Bottom => reflect_y = ball_velocity.y > 0.0,
373
}
374
375
// Reflect velocity on the x-axis if we hit something on the x-axis
376
if reflect_x {
377
ball_velocity.x = -ball_velocity.x;
378
}
379
380
// Reflect velocity on the y-axis if we hit something on the y-axis
381
if reflect_y {
382
ball_velocity.y = -ball_velocity.y;
383
}
384
}
385
}
386
}
387
388
fn play_collision_sound(
389
_collided: On<BallCollided>,
390
mut commands: Commands,
391
sound: Res<CollisionSound>,
392
) {
393
commands.spawn((AudioPlayer(sound.clone()), PlaybackSettings::DESPAWN));
394
}
395
396
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
397
enum Collision {
398
Left,
399
Right,
400
Top,
401
Bottom,
402
}
403
404
// Returns `Some` if `ball` collides with `bounding_box`.
405
// The returned `Collision` is the side of `bounding_box` that `ball` hit.
406
fn ball_collision(ball: BoundingCircle, bounding_box: Aabb2d) -> Option<Collision> {
407
if !ball.intersects(&bounding_box) {
408
return None;
409
}
410
411
let closest = bounding_box.closest_point(ball.center());
412
let offset = ball.center() - closest;
413
let side = if offset.x.abs() > offset.y.abs() {
414
if offset.x < 0. {
415
Collision::Left
416
} else {
417
Collision::Right
418
}
419
} else if offset.y > 0. {
420
Collision::Top
421
} else {
422
Collision::Bottom
423
};
424
425
Some(side)
426
}
427
428