Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/examples/stress_tests/many_lights.rs
6849 views
1
//! Simple benchmark to test rendering many point lights.
2
//! Run with `WGPU_SETTINGS_PRIO=webgl2` to restrict to uniform buffers and max 256 lights.
3
4
use std::f64::consts::PI;
5
6
use bevy::{
7
camera::ScalingMode,
8
color::palettes::css::DEEP_PINK,
9
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
10
math::{DVec2, DVec3},
11
pbr::{ExtractedPointLight, GlobalClusterableObjectMeta},
12
prelude::*,
13
render::{Render, RenderApp, RenderSystems},
14
window::{PresentMode, WindowResolution},
15
winit::WinitSettings,
16
};
17
use rand::{rng, Rng};
18
19
fn main() {
20
App::new()
21
.add_plugins((
22
DefaultPlugins.set(WindowPlugin {
23
primary_window: Some(Window {
24
resolution: WindowResolution::new(1920, 1080).with_scale_factor_override(1.0),
25
title: "many_lights".into(),
26
present_mode: PresentMode::AutoNoVsync,
27
..default()
28
}),
29
..default()
30
}),
31
FrameTimeDiagnosticsPlugin::default(),
32
LogDiagnosticsPlugin::default(),
33
LogVisibleLights,
34
))
35
.insert_resource(WinitSettings::continuous())
36
.add_systems(Startup, setup)
37
.add_systems(Update, (move_camera, print_light_count))
38
.run();
39
}
40
41
fn setup(
42
mut commands: Commands,
43
mut meshes: ResMut<Assets<Mesh>>,
44
mut materials: ResMut<Assets<StandardMaterial>>,
45
) {
46
warn!(include_str!("warning_string.txt"));
47
48
const LIGHT_RADIUS: f32 = 0.3;
49
const LIGHT_INTENSITY: f32 = 1000.0;
50
const RADIUS: f32 = 50.0;
51
const N_LIGHTS: usize = 100_000;
52
53
commands.spawn((
54
Mesh3d(meshes.add(Sphere::new(RADIUS).mesh().ico(9).unwrap())),
55
MeshMaterial3d(materials.add(Color::WHITE)),
56
Transform::from_scale(Vec3::NEG_ONE),
57
));
58
59
let mesh = meshes.add(Cuboid::default());
60
let material = materials.add(StandardMaterial {
61
base_color: DEEP_PINK.into(),
62
..default()
63
});
64
65
// NOTE: This pattern is good for testing performance of culling as it provides roughly
66
// the same number of visible meshes regardless of the viewing angle.
67
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
68
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
69
70
// Spawn N_LIGHTS many lights
71
commands.spawn_batch((0..N_LIGHTS).map(move |i| {
72
let mut rng = rng();
73
74
let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_LIGHTS);
75
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
76
77
(
78
PointLight {
79
range: LIGHT_RADIUS,
80
intensity: LIGHT_INTENSITY,
81
color: Color::hsl(rng.random_range(0.0..360.0), 1.0, 0.5),
82
..default()
83
},
84
Transform::from_translation((RADIUS as f64 * unit_sphere_p).as_vec3()),
85
)
86
}));
87
88
// camera
89
match std::env::args().nth(1).as_deref() {
90
Some("orthographic") => commands.spawn((
91
Camera3d::default(),
92
Projection::from(OrthographicProjection {
93
scaling_mode: ScalingMode::FixedHorizontal {
94
viewport_width: 20.0,
95
},
96
..OrthographicProjection::default_3d()
97
}),
98
)),
99
_ => commands.spawn(Camera3d::default()),
100
};
101
102
// add one cube, the only one with strong handles
103
// also serves as a reference point during rotation
104
commands.spawn((
105
Mesh3d(mesh),
106
MeshMaterial3d(material),
107
Transform {
108
translation: Vec3::new(0.0, RADIUS, 0.0),
109
scale: Vec3::splat(5.0),
110
..default()
111
},
112
));
113
}
114
115
// NOTE: This epsilon value is apparently optimal for optimizing for the average
116
// nearest-neighbor distance. See:
117
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
118
// for details.
119
const EPSILON: f64 = 0.36;
120
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
121
DVec2::new(
122
PI * 2. * (i as f64 / golden_ratio),
123
ops::acos((1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)) as f32)
124
as f64,
125
)
126
}
127
128
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
129
let (sin_theta, cos_theta) = p.x.sin_cos();
130
let (sin_phi, cos_phi) = p.y.sin_cos();
131
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
132
}
133
134
// System for rotating the camera
135
fn move_camera(time: Res<Time>, mut camera_transform: Single<&mut Transform, With<Camera>>) {
136
let delta = time.delta_secs() * 0.15;
137
camera_transform.rotate_z(delta);
138
camera_transform.rotate_x(delta);
139
}
140
141
// System for printing the number of meshes on every tick of the timer
142
fn print_light_count(time: Res<Time>, mut timer: Local<PrintingTimer>, lights: Query<&PointLight>) {
143
timer.0.tick(time.delta());
144
145
if timer.0.just_finished() {
146
info!("Lights: {}", lights.iter().len());
147
}
148
}
149
150
struct LogVisibleLights;
151
152
impl Plugin for LogVisibleLights {
153
fn build(&self, app: &mut App) {
154
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
155
return;
156
};
157
158
render_app.add_systems(
159
Render,
160
print_visible_light_count.in_set(RenderSystems::Prepare),
161
);
162
}
163
}
164
165
// System for printing the number of meshes on every tick of the timer
166
fn print_visible_light_count(
167
time: Res<Time>,
168
mut timer: Local<PrintingTimer>,
169
visible: Query<&ExtractedPointLight>,
170
global_light_meta: Res<GlobalClusterableObjectMeta>,
171
) {
172
timer.0.tick(time.delta());
173
174
if timer.0.just_finished() {
175
info!(
176
"Visible Lights: {}, Rendered Lights: {}",
177
visible.iter().len(),
178
global_light_meta.entity_to_index.len()
179
);
180
}
181
}
182
183
struct PrintingTimer(Timer);
184
185
impl Default for PrintingTimer {
186
fn default() -> Self {
187
Self(Timer::from_seconds(1.0, TimerMode::Repeating))
188
}
189
}
190
191