Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/modules/godot_physics_2d/godot_joints_2d.cpp
10277 views
1
/**************************************************************************/
2
/* godot_joints_2d.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "godot_joints_2d.h"
32
33
#include "godot_space_2d.h"
34
35
//based on chipmunk joint constraints
36
37
/* Copyright (c) 2007 Scott Lembcke
38
*
39
* Permission is hereby granted, free of charge, to any person obtaining a copy
40
* of this software and associated documentation files (the "Software"), to deal
41
* in the Software without restriction, including without limitation the rights
42
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
43
* copies of the Software, and to permit persons to whom the Software is
44
* furnished to do so, subject to the following conditions:
45
*
46
* The above copyright notice and this permission notice shall be included in
47
* all copies or substantial portions of the Software.
48
*
49
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
50
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
51
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
52
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
53
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
54
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
55
* SOFTWARE.
56
*/
57
58
void GodotJoint2D::copy_settings_from(GodotJoint2D *p_joint) {
59
set_self(p_joint->get_self());
60
set_max_force(p_joint->get_max_force());
61
set_bias(p_joint->get_bias());
62
set_max_bias(p_joint->get_max_bias());
63
disable_collisions_between_bodies(p_joint->is_disabled_collisions_between_bodies());
64
}
65
66
static inline real_t k_scalar(GodotBody2D *a, GodotBody2D *b, const Vector2 &rA, const Vector2 &rB, const Vector2 &n) {
67
real_t value = 0.0;
68
69
{
70
value += a->get_inv_mass();
71
real_t rcn = (rA - a->get_center_of_mass()).cross(n);
72
value += a->get_inv_inertia() * rcn * rcn;
73
}
74
75
if (b) {
76
value += b->get_inv_mass();
77
real_t rcn = (rB - b->get_center_of_mass()).cross(n);
78
value += b->get_inv_inertia() * rcn * rcn;
79
}
80
81
return value;
82
}
83
84
static inline Vector2
85
relative_velocity(GodotBody2D *a, GodotBody2D *b, Vector2 rA, Vector2 rB) {
86
Vector2 sum = a->get_linear_velocity() - (rA - a->get_center_of_mass()).orthogonal() * a->get_angular_velocity();
87
if (b) {
88
return (b->get_linear_velocity() - (rB - b->get_center_of_mass()).orthogonal() * b->get_angular_velocity()) - sum;
89
} else {
90
return -sum;
91
}
92
}
93
94
static inline real_t
95
normal_relative_velocity(GodotBody2D *a, GodotBody2D *b, Vector2 rA, Vector2 rB, Vector2 n) {
96
return relative_velocity(a, b, rA, rB).dot(n);
97
}
98
99
bool GodotPinJoint2D::setup(real_t p_step) {
100
dynamic_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC);
101
dynamic_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC);
102
103
if (!dynamic_A && !dynamic_B) {
104
return false;
105
}
106
107
GodotSpace2D *space = A->get_space();
108
ERR_FAIL_NULL_V(space, false);
109
110
rA = A->get_transform().basis_xform(anchor_A);
111
rB = B ? B->get_transform().basis_xform(anchor_B) : anchor_B;
112
113
real_t B_inv_mass = B ? B->get_inv_mass() : 0.0;
114
115
Transform2D K1;
116
K1[0].x = A->get_inv_mass() + B_inv_mass;
117
K1[1].x = 0.0f;
118
K1[0].y = 0.0f;
119
K1[1].y = A->get_inv_mass() + B_inv_mass;
120
121
Vector2 r1 = rA - A->get_center_of_mass();
122
123
Transform2D K2;
124
K2[0].x = A->get_inv_inertia() * r1.y * r1.y;
125
K2[1].x = -A->get_inv_inertia() * r1.x * r1.y;
126
K2[0].y = -A->get_inv_inertia() * r1.x * r1.y;
127
K2[1].y = A->get_inv_inertia() * r1.x * r1.x;
128
129
Transform2D K;
130
K[0] = K1[0] + K2[0];
131
K[1] = K1[1] + K2[1];
132
133
if (B) {
134
Vector2 r2 = rB - B->get_center_of_mass();
135
136
Transform2D K3;
137
K3[0].x = B->get_inv_inertia() * r2.y * r2.y;
138
K3[1].x = -B->get_inv_inertia() * r2.x * r2.y;
139
K3[0].y = -B->get_inv_inertia() * r2.x * r2.y;
140
K3[1].y = B->get_inv_inertia() * r2.x * r2.x;
141
142
K[0] += K3[0];
143
K[1] += K3[1];
144
}
145
146
K[0].x += softness;
147
K[1].y += softness;
148
149
M = K.affine_inverse();
150
151
Vector2 gA = rA + A->get_transform().get_origin();
152
Vector2 gB = B ? rB + B->get_transform().get_origin() : rB;
153
154
Vector2 delta = gB - gA;
155
156
bias = delta * -(get_bias() == 0 ? space->get_constraint_bias() : get_bias()) * (1.0 / p_step);
157
158
// Compute max impulse.
159
jn_max = get_max_force() * p_step;
160
161
return true;
162
}
163
164
inline Vector2 custom_cross(const Vector2 &p_vec, real_t p_other) {
165
return Vector2(p_other * p_vec.y, -p_other * p_vec.x);
166
}
167
168
bool GodotPinJoint2D::pre_solve(real_t p_step) {
169
// Apply accumulated impulse.
170
if (dynamic_A) {
171
A->apply_impulse(-P, rA);
172
}
173
if (B && dynamic_B) {
174
B->apply_impulse(P, rB);
175
}
176
// Angle limits joint pre_solve step taken from https://github.com/slembcke/Chipmunk2D/blob/d0239ef4599b3688a5a336373f7d0a68426414ba/src/cpRotaryLimitJoint.c
177
real_t i_sum_local = A->get_inv_inertia();
178
if (B) {
179
i_sum_local += B->get_inv_inertia();
180
}
181
i_sum = 1.0 / (i_sum_local);
182
if (angular_limit_enabled && B) {
183
Vector2 diff_vector = B->get_transform().get_origin() - A->get_transform().get_origin();
184
diff_vector = diff_vector.rotated(-initial_angle);
185
real_t dist = diff_vector.angle();
186
real_t pdist = 0.0;
187
if (dist > angular_limit_upper) {
188
pdist = dist - angular_limit_upper;
189
} else if (dist < angular_limit_lower) {
190
pdist = dist - angular_limit_lower;
191
}
192
real_t error_bias = Math::pow(1.0 - 0.15, 60.0);
193
// Calculate bias velocity.
194
bias_velocity = -CLAMP((-1.0 - Math::pow(error_bias, p_step)) * pdist / p_step, -get_max_bias(), get_max_bias());
195
// If the bias velocity is 0, the joint is not at a limit.
196
if (bias_velocity >= -CMP_EPSILON && bias_velocity <= CMP_EPSILON) {
197
j_acc = 0;
198
is_joint_at_limit = false;
199
} else {
200
is_joint_at_limit = true;
201
}
202
} else {
203
bias_velocity = 0.0;
204
}
205
206
return true;
207
}
208
209
void GodotPinJoint2D::solve(real_t p_step) {
210
// Compute relative velocity.
211
Vector2 vA = A->get_linear_velocity() - custom_cross(rA - A->get_center_of_mass(), A->get_angular_velocity());
212
213
Vector2 rel_vel;
214
if (B) {
215
rel_vel = B->get_linear_velocity() - custom_cross(rB - B->get_center_of_mass(), B->get_angular_velocity()) - vA;
216
} else {
217
rel_vel = -vA;
218
}
219
// Angle limits joint solve step taken from https://github.com/slembcke/Chipmunk2D/blob/d0239ef4599b3688a5a336373f7d0a68426414ba/src/cpRotaryLimitJoint.c
220
if ((angular_limit_enabled || motor_enabled) && B) {
221
// Compute relative rotational velocity.
222
real_t wr = B->get_angular_velocity() - A->get_angular_velocity();
223
// Motor solve part taken from https://github.com/slembcke/Chipmunk2D/blob/d0239ef4599b3688a5a336373f7d0a68426414ba/src/cpSimpleMotor.c
224
if (motor_enabled) {
225
wr -= motor_target_velocity;
226
}
227
real_t j_max = jn_max;
228
229
// Compute normal impulse.
230
real_t j = -(bias_velocity + wr) * i_sum;
231
real_t j_old = j_acc;
232
// Only enable the limits if we have to.
233
if (angular_limit_enabled && is_joint_at_limit) {
234
if (bias_velocity < 0.0) {
235
j_acc = CLAMP(j_old + j, 0.0, j_max);
236
} else {
237
j_acc = CLAMP(j_old + j, -j_max, 0.0);
238
}
239
} else {
240
j_acc = CLAMP(j_old + j, -j_max, j_max);
241
}
242
j = j_acc - j_old;
243
A->apply_torque_impulse(-j * A->get_inv_inertia());
244
B->apply_torque_impulse(j * B->get_inv_inertia());
245
}
246
247
Vector2 impulse = M.basis_xform(bias - rel_vel - Vector2(softness, softness) * P);
248
249
if (dynamic_A) {
250
A->apply_impulse(-impulse, rA);
251
}
252
if (B && dynamic_B) {
253
B->apply_impulse(impulse, rB);
254
}
255
256
P += impulse;
257
}
258
259
void GodotPinJoint2D::set_param(PhysicsServer2D::PinJointParam p_param, real_t p_value) {
260
switch (p_param) {
261
case PhysicsServer2D::PIN_JOINT_SOFTNESS: {
262
softness = p_value;
263
} break;
264
case PhysicsServer2D::PIN_JOINT_LIMIT_UPPER: {
265
angular_limit_upper = p_value;
266
} break;
267
case PhysicsServer2D::PIN_JOINT_LIMIT_LOWER: {
268
angular_limit_lower = p_value;
269
} break;
270
case PhysicsServer2D::PIN_JOINT_MOTOR_TARGET_VELOCITY: {
271
motor_target_velocity = p_value;
272
} break;
273
}
274
}
275
276
real_t GodotPinJoint2D::get_param(PhysicsServer2D::PinJointParam p_param) const {
277
switch (p_param) {
278
case PhysicsServer2D::PIN_JOINT_SOFTNESS: {
279
return softness;
280
}
281
case PhysicsServer2D::PIN_JOINT_LIMIT_UPPER: {
282
return angular_limit_upper;
283
}
284
case PhysicsServer2D::PIN_JOINT_LIMIT_LOWER: {
285
return angular_limit_lower;
286
}
287
case PhysicsServer2D::PIN_JOINT_MOTOR_TARGET_VELOCITY: {
288
return motor_target_velocity;
289
}
290
}
291
ERR_FAIL_V(0);
292
}
293
294
void GodotPinJoint2D::set_flag(PhysicsServer2D::PinJointFlag p_flag, bool p_enabled) {
295
switch (p_flag) {
296
case PhysicsServer2D::PIN_JOINT_FLAG_ANGULAR_LIMIT_ENABLED: {
297
angular_limit_enabled = p_enabled;
298
} break;
299
case PhysicsServer2D::PIN_JOINT_FLAG_MOTOR_ENABLED: {
300
motor_enabled = p_enabled;
301
} break;
302
}
303
}
304
305
bool GodotPinJoint2D::get_flag(PhysicsServer2D::PinJointFlag p_flag) const {
306
switch (p_flag) {
307
case PhysicsServer2D::PIN_JOINT_FLAG_ANGULAR_LIMIT_ENABLED: {
308
return angular_limit_enabled;
309
}
310
case PhysicsServer2D::PIN_JOINT_FLAG_MOTOR_ENABLED: {
311
return motor_enabled;
312
}
313
}
314
ERR_FAIL_V(false);
315
}
316
317
GodotPinJoint2D::GodotPinJoint2D(const Vector2 &p_pos, GodotBody2D *p_body_a, GodotBody2D *p_body_b) :
318
GodotJoint2D(_arr, p_body_b ? 2 : 1) {
319
A = p_body_a;
320
B = p_body_b;
321
anchor_A = p_body_a->get_inv_transform().xform(p_pos);
322
anchor_B = p_body_b ? p_body_b->get_inv_transform().xform(p_pos) : p_pos;
323
324
p_body_a->add_constraint(this, 0);
325
if (p_body_b) {
326
p_body_b->add_constraint(this, 1);
327
initial_angle = A->get_transform().get_origin().angle_to_point(B->get_transform().get_origin());
328
}
329
}
330
331
//////////////////////////////////////////////
332
//////////////////////////////////////////////
333
//////////////////////////////////////////////
334
335
static inline void
336
k_tensor(GodotBody2D *a, GodotBody2D *b, Vector2 r1, Vector2 r2, Vector2 *k1, Vector2 *k2) {
337
// calculate mass matrix
338
// If I wasn't lazy and wrote a proper matrix class, this wouldn't be so gross...
339
real_t k11, k12, k21, k22;
340
real_t m_sum = a->get_inv_mass() + b->get_inv_mass();
341
342
// start with I*m_sum
343
k11 = m_sum;
344
k12 = 0.0f;
345
k21 = 0.0f;
346
k22 = m_sum;
347
348
r1 -= a->get_center_of_mass();
349
r2 -= b->get_center_of_mass();
350
351
// add the influence from r1
352
real_t a_i_inv = a->get_inv_inertia();
353
real_t r1xsq = r1.x * r1.x * a_i_inv;
354
real_t r1ysq = r1.y * r1.y * a_i_inv;
355
real_t r1nxy = -r1.x * r1.y * a_i_inv;
356
k11 += r1ysq;
357
k12 += r1nxy;
358
k21 += r1nxy;
359
k22 += r1xsq;
360
361
// add the influence from r2
362
real_t b_i_inv = b->get_inv_inertia();
363
real_t r2xsq = r2.x * r2.x * b_i_inv;
364
real_t r2ysq = r2.y * r2.y * b_i_inv;
365
real_t r2nxy = -r2.x * r2.y * b_i_inv;
366
k11 += r2ysq;
367
k12 += r2nxy;
368
k21 += r2nxy;
369
k22 += r2xsq;
370
371
// invert
372
real_t determinant = k11 * k22 - k12 * k21;
373
ERR_FAIL_COND(determinant == 0.0);
374
375
real_t det_inv = 1.0f / determinant;
376
*k1 = Vector2(k22 * det_inv, -k12 * det_inv);
377
*k2 = Vector2(-k21 * det_inv, k11 * det_inv);
378
}
379
380
static _FORCE_INLINE_ Vector2
381
mult_k(const Vector2 &vr, const Vector2 &k1, const Vector2 &k2) {
382
return Vector2(vr.dot(k1), vr.dot(k2));
383
}
384
385
bool GodotGrooveJoint2D::setup(real_t p_step) {
386
dynamic_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC);
387
dynamic_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC);
388
389
if (!dynamic_A && !dynamic_B) {
390
return false;
391
}
392
393
GodotSpace2D *space = A->get_space();
394
ERR_FAIL_NULL_V(space, false);
395
396
// calculate endpoints in worldspace
397
Vector2 ta = A->get_transform().xform(A_groove_1);
398
Vector2 tb = A->get_transform().xform(A_groove_2);
399
400
// calculate axis
401
Vector2 n = -(tb - ta).orthogonal().normalized();
402
real_t d = ta.dot(n);
403
404
xf_normal = n;
405
rB = B->get_transform().basis_xform(B_anchor);
406
407
// calculate tangential distance along the axis of rB
408
real_t td = (B->get_transform().get_origin() + rB).cross(n);
409
// calculate clamping factor and rB
410
if (td <= ta.cross(n)) {
411
clamp = 1.0f;
412
rA = ta - A->get_transform().get_origin();
413
} else if (td >= tb.cross(n)) {
414
clamp = -1.0f;
415
rA = tb - A->get_transform().get_origin();
416
} else {
417
clamp = 0.0f;
418
//joint->r1 = cpvsub(cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d)), a->p);
419
rA = ((-n.orthogonal() * -td) + n * d) - A->get_transform().get_origin();
420
}
421
422
// Calculate mass tensor
423
k_tensor(A, B, rA, rB, &k1, &k2);
424
425
// compute max impulse
426
jn_max = get_max_force() * p_step;
427
428
// calculate bias velocity
429
//cpVect delta = cpvsub(cpvadd(b->p, joint->r2), cpvadd(a->p, joint->r1));
430
//joint->bias = cpvclamp(cpvmult(delta, -joint->constraint.biasCoef*dt_inv), joint->constraint.maxBias);
431
432
Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA);
433
434
real_t _b = get_bias();
435
gbias = (delta * -(_b == 0 ? space->get_constraint_bias() : _b) * (1.0 / p_step)).limit_length(get_max_bias());
436
437
correct = true;
438
return true;
439
}
440
441
bool GodotGrooveJoint2D::pre_solve(real_t p_step) {
442
// Apply accumulated impulse.
443
if (dynamic_A) {
444
A->apply_impulse(-jn_acc, rA);
445
}
446
if (dynamic_B) {
447
B->apply_impulse(jn_acc, rB);
448
}
449
450
return true;
451
}
452
453
void GodotGrooveJoint2D::solve(real_t p_step) {
454
// compute impulse
455
Vector2 vr = relative_velocity(A, B, rA, rB);
456
457
Vector2 j = mult_k(gbias - vr, k1, k2);
458
Vector2 jOld = jn_acc;
459
j += jOld;
460
461
jn_acc = (((clamp * j.cross(xf_normal)) > 0) ? j : j.project(xf_normal)).limit_length(jn_max);
462
463
j = jn_acc - jOld;
464
465
if (dynamic_A) {
466
A->apply_impulse(-j, rA);
467
}
468
if (dynamic_B) {
469
B->apply_impulse(j, rB);
470
}
471
}
472
473
GodotGrooveJoint2D::GodotGrooveJoint2D(const Vector2 &p_a_groove1, const Vector2 &p_a_groove2, const Vector2 &p_b_anchor, GodotBody2D *p_body_a, GodotBody2D *p_body_b) :
474
GodotJoint2D(_arr, 2) {
475
A = p_body_a;
476
B = p_body_b;
477
478
A_groove_1 = A->get_inv_transform().xform(p_a_groove1);
479
A_groove_2 = A->get_inv_transform().xform(p_a_groove2);
480
B_anchor = B->get_inv_transform().xform(p_b_anchor);
481
A_groove_normal = -(A_groove_2 - A_groove_1).normalized().orthogonal();
482
483
A->add_constraint(this, 0);
484
B->add_constraint(this, 1);
485
}
486
487
//////////////////////////////////////////////
488
//////////////////////////////////////////////
489
//////////////////////////////////////////////
490
491
bool GodotDampedSpringJoint2D::setup(real_t p_step) {
492
dynamic_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC);
493
dynamic_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC);
494
495
if (!dynamic_A && !dynamic_B) {
496
return false;
497
}
498
499
rA = A->get_transform().basis_xform(anchor_A);
500
rB = B->get_transform().basis_xform(anchor_B);
501
502
Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA);
503
real_t dist = delta.length();
504
505
if (dist) {
506
n = delta / dist;
507
} else {
508
n = Vector2();
509
}
510
511
real_t k = k_scalar(A, B, rA, rB, n);
512
n_mass = 1.0f / k;
513
514
target_vrn = 0.0f;
515
v_coef = 1.0f - Math::exp(-damping * (p_step)*k);
516
517
// Calculate spring force.
518
real_t f_spring = (rest_length - dist) * stiffness;
519
j = n * f_spring * (p_step);
520
521
return true;
522
}
523
524
bool GodotDampedSpringJoint2D::pre_solve(real_t p_step) {
525
// Apply spring force.
526
if (dynamic_A) {
527
A->apply_impulse(-j, rA);
528
}
529
if (dynamic_B) {
530
B->apply_impulse(j, rB);
531
}
532
533
return true;
534
}
535
536
void GodotDampedSpringJoint2D::solve(real_t p_step) {
537
// compute relative velocity
538
real_t vrn = normal_relative_velocity(A, B, rA, rB, n) - target_vrn;
539
540
// compute velocity loss from drag
541
// not 100% certain this is derived correctly, though it makes sense
542
real_t v_damp = -vrn * v_coef;
543
target_vrn = vrn + v_damp;
544
Vector2 j_new = n * v_damp * n_mass;
545
546
if (dynamic_A) {
547
A->apply_impulse(-j_new, rA);
548
}
549
if (dynamic_B) {
550
B->apply_impulse(j_new, rB);
551
}
552
}
553
554
void GodotDampedSpringJoint2D::set_param(PhysicsServer2D::DampedSpringParam p_param, real_t p_value) {
555
switch (p_param) {
556
case PhysicsServer2D::DAMPED_SPRING_REST_LENGTH: {
557
rest_length = p_value;
558
} break;
559
case PhysicsServer2D::DAMPED_SPRING_DAMPING: {
560
damping = p_value;
561
} break;
562
case PhysicsServer2D::DAMPED_SPRING_STIFFNESS: {
563
stiffness = p_value;
564
} break;
565
}
566
}
567
568
real_t GodotDampedSpringJoint2D::get_param(PhysicsServer2D::DampedSpringParam p_param) const {
569
switch (p_param) {
570
case PhysicsServer2D::DAMPED_SPRING_REST_LENGTH: {
571
return rest_length;
572
} break;
573
case PhysicsServer2D::DAMPED_SPRING_DAMPING: {
574
return damping;
575
} break;
576
case PhysicsServer2D::DAMPED_SPRING_STIFFNESS: {
577
return stiffness;
578
} break;
579
}
580
581
ERR_FAIL_V(0);
582
}
583
584
GodotDampedSpringJoint2D::GodotDampedSpringJoint2D(const Vector2 &p_anchor_a, const Vector2 &p_anchor_b, GodotBody2D *p_body_a, GodotBody2D *p_body_b) :
585
GodotJoint2D(_arr, 2) {
586
A = p_body_a;
587
B = p_body_b;
588
anchor_A = A->get_inv_transform().xform(p_anchor_a);
589
anchor_B = B->get_inv_transform().xform(p_anchor_b);
590
591
rest_length = p_anchor_a.distance_to(p_anchor_b);
592
593
A->add_constraint(this, 0);
594
B->add_constraint(this, 1);
595
}
596
597