Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/modules/godot_physics_3d/godot_collision_solver_3d.cpp
10277 views
1
/**************************************************************************/
2
/* godot_collision_solver_3d.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "godot_collision_solver_3d.h"
32
33
#include "godot_collision_solver_3d_sat.h"
34
#include "godot_soft_body_3d.h"
35
36
#include "gjk_epa.h"
37
38
#define collision_solver sat_calculate_penetration
39
//#define collision_solver gjk_epa_calculate_penetration
40
41
bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
42
const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
43
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
44
return false;
45
}
46
Plane p = p_transform_A.xform(world_boundary->get_plane());
47
48
static const int max_supports = 16;
49
Vector3 supports[max_supports];
50
int support_count;
51
GodotShape3D::FeatureType support_type = GodotShape3D::FeatureType::FEATURE_POINT;
52
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
53
54
if (support_type == GodotShape3D::FEATURE_CIRCLE) {
55
ERR_FAIL_COND_V(support_count != 3, false);
56
57
Vector3 circle_pos = supports[0];
58
Vector3 circle_axis_1 = supports[1] - circle_pos;
59
Vector3 circle_axis_2 = supports[2] - circle_pos;
60
61
// Use 3 equidistant points on the circle.
62
for (int i = 0; i < 3; ++i) {
63
Vector3 vertex_pos = circle_pos;
64
vertex_pos += circle_axis_1 * Math::cos(2.0 * Math::PI * i / 3.0);
65
vertex_pos += circle_axis_2 * Math::sin(2.0 * Math::PI * i / 3.0);
66
supports[i] = vertex_pos;
67
}
68
}
69
70
bool found = false;
71
72
for (int i = 0; i < support_count; i++) {
73
supports[i] += p_margin * supports[i].normalized();
74
supports[i] = p_transform_B.xform(supports[i]);
75
if (p.distance_to(supports[i]) >= 0) {
76
continue;
77
}
78
found = true;
79
80
Vector3 support_A = p.project(supports[i]);
81
82
if (p_result_callback) {
83
if (p_swap_result) {
84
Vector3 normal = (support_A - supports[i]).normalized();
85
p_result_callback(supports[i], 0, support_A, 0, normal, p_userdata);
86
} else {
87
Vector3 normal = (supports[i] - support_A).normalized();
88
p_result_callback(support_A, 0, supports[i], 0, normal, p_userdata);
89
}
90
}
91
}
92
93
return found;
94
}
95
96
bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
97
const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A);
98
99
Vector3 from = p_transform_A.origin;
100
Vector3 to = from + p_transform_A.basis.get_column(2) * (ray->get_length() + p_margin);
101
Vector3 support_A = to;
102
103
Transform3D ai = p_transform_B.affine_inverse();
104
105
from = ai.xform(from);
106
to = ai.xform(to);
107
108
Vector3 p, n;
109
int fi = -1;
110
if (!p_shape_B->intersect_segment(from, to, p, n, fi, true)) {
111
return false;
112
}
113
114
// Discard contacts when the ray is fully contained inside the shape.
115
if (n == Vector3()) {
116
return false;
117
}
118
119
// Discard contacts in the wrong direction.
120
if (n.dot(from - to) < CMP_EPSILON) {
121
return false;
122
}
123
124
Vector3 support_B = p_transform_B.xform(p);
125
if (ray->get_slide_on_slope()) {
126
Vector3 global_n = ai.basis.xform_inv(n).normalized();
127
support_B = support_A + (support_B - support_A).length() * global_n;
128
}
129
130
if (p_result_callback) {
131
Vector3 normal = (support_B - support_A).normalized();
132
if (p_swap_result) {
133
p_result_callback(support_B, 0, support_A, 0, -normal, p_userdata);
134
} else {
135
p_result_callback(support_A, 0, support_B, 0, normal, p_userdata);
136
}
137
}
138
return true;
139
}
140
141
struct _SoftBodyContactCollisionInfo {
142
int node_index = 0;
143
GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
144
void *userdata = nullptr;
145
bool swap_result = false;
146
int contact_count = 0;
147
};
148
149
void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
150
_SoftBodyContactCollisionInfo &cinfo = *(static_cast<_SoftBodyContactCollisionInfo *>(p_userdata));
151
152
++cinfo.contact_count;
153
154
if (!cinfo.result_callback) {
155
return;
156
}
157
158
if (cinfo.swap_result) {
159
cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, -normal, cinfo.userdata);
160
} else {
161
cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, normal, cinfo.userdata);
162
}
163
}
164
165
struct _SoftBodyQueryInfo {
166
GodotSoftBody3D *soft_body = nullptr;
167
const GodotShape3D *shape_A = nullptr;
168
const GodotShape3D *shape_B = nullptr;
169
Transform3D transform_A;
170
Transform3D node_transform;
171
_SoftBodyContactCollisionInfo contact_info;
172
#ifdef DEBUG_ENABLED
173
int node_query_count = 0;
174
int convex_query_count = 0;
175
#endif
176
};
177
178
bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) {
179
_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
180
181
Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index);
182
183
Transform3D transform_B;
184
transform_B.origin = query_cinfo.node_transform.xform(node_position);
185
186
query_cinfo.contact_info.node_index = p_node_index;
187
bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info);
188
189
#ifdef DEBUG_ENABLED
190
++query_cinfo.node_query_count;
191
#endif
192
193
// Stop at first collision if contacts are not needed.
194
return (collided && !query_cinfo.contact_info.result_callback);
195
}
196
197
bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) {
198
_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
199
200
query_cinfo.shape_A = p_convex;
201
202
// Calculate AABB for internal soft body query (in world space).
203
AABB shape_aabb;
204
for (int i = 0; i < 3; i++) {
205
Vector3 axis;
206
axis[i] = 1.0;
207
208
real_t smin, smax;
209
p_convex->project_range(axis, query_cinfo.transform_A, smin, smax);
210
211
shape_aabb.position[i] = smin;
212
shape_aabb.size[i] = smax - smin;
213
}
214
215
shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin());
216
217
query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
218
219
bool collided = (query_cinfo.contact_info.contact_count > 0);
220
221
#ifdef DEBUG_ENABLED
222
++query_cinfo.convex_query_count;
223
#endif
224
225
// Stop at first collision if contacts are not needed.
226
return (collided && !query_cinfo.contact_info.result_callback);
227
}
228
229
bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
230
const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B);
231
232
GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body();
233
const Transform3D &world_to_local = soft_body->get_inv_transform();
234
235
const real_t collision_margin = soft_body->get_collision_margin();
236
237
GodotSphereShape3D sphere_shape;
238
sphere_shape.set_data(collision_margin);
239
240
_SoftBodyQueryInfo query_cinfo;
241
query_cinfo.contact_info.result_callback = p_result_callback;
242
query_cinfo.contact_info.userdata = p_userdata;
243
query_cinfo.contact_info.swap_result = p_swap_result;
244
query_cinfo.soft_body = soft_body;
245
query_cinfo.node_transform = p_transform_B * world_to_local;
246
query_cinfo.shape_A = p_shape_A;
247
query_cinfo.transform_A = p_transform_A;
248
query_cinfo.shape_B = &sphere_shape;
249
250
if (p_shape_A->is_concave()) {
251
// In case of concave shape, query convex shapes first.
252
const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A);
253
254
AABB soft_body_aabb = soft_body->get_bounds();
255
soft_body_aabb.grow_by(collision_margin);
256
257
// Calculate AABB for internal concave shape query (in local space).
258
AABB local_aabb;
259
for (int i = 0; i < 3; i++) {
260
Vector3 axis(p_transform_A.basis.get_column(i));
261
real_t axis_scale = 1.0 / axis.length();
262
263
real_t smin = soft_body_aabb.position[i];
264
real_t smax = smin + soft_body_aabb.size[i];
265
266
smin *= axis_scale;
267
smax *= axis_scale;
268
269
local_aabb.position[i] = smin;
270
local_aabb.size[i] = smax - smin;
271
}
272
273
concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true);
274
} else {
275
AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb());
276
shape_aabb.grow_by(collision_margin);
277
278
soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
279
}
280
281
return (query_cinfo.contact_info.contact_count > 0);
282
}
283
284
struct _ConcaveCollisionInfo {
285
const Transform3D *transform_A = nullptr;
286
const GodotShape3D *shape_A = nullptr;
287
const Transform3D *transform_B = nullptr;
288
GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
289
void *userdata = nullptr;
290
bool swap_result = false;
291
bool collided = false;
292
int aabb_tests = 0;
293
int collisions = 0;
294
bool tested = false;
295
real_t margin_A = 0.0f;
296
real_t margin_B = 0.0f;
297
Vector3 close_A;
298
Vector3 close_B;
299
};
300
301
bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) {
302
_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
303
cinfo.aabb_tests++;
304
305
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B);
306
if (!collided) {
307
return false;
308
}
309
310
cinfo.collided = true;
311
cinfo.collisions++;
312
313
// Stop at first collision if contacts are not needed.
314
return !cinfo.result_callback;
315
}
316
317
bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
318
const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
319
320
_ConcaveCollisionInfo cinfo;
321
cinfo.transform_A = &p_transform_A;
322
cinfo.shape_A = p_shape_A;
323
cinfo.transform_B = &p_transform_B;
324
cinfo.result_callback = p_result_callback;
325
cinfo.userdata = p_userdata;
326
cinfo.swap_result = p_swap_result;
327
cinfo.collided = false;
328
cinfo.collisions = 0;
329
cinfo.margin_A = p_margin_A;
330
cinfo.margin_B = p_margin_B;
331
332
cinfo.aabb_tests = 0;
333
334
Transform3D rel_transform = p_transform_A;
335
rel_transform.origin -= p_transform_B.origin;
336
337
//quickly compute a local AABB
338
339
AABB local_aabb;
340
for (int i = 0; i < 3; i++) {
341
Vector3 axis(p_transform_B.basis.get_column(i));
342
real_t axis_scale = 1.0 / axis.length();
343
axis *= axis_scale;
344
345
real_t smin = 0.0, smax = 0.0;
346
p_shape_A->project_range(axis, rel_transform, smin, smax);
347
smin -= p_margin_A;
348
smax += p_margin_A;
349
smin *= axis_scale;
350
smax *= axis_scale;
351
352
local_aabb.position[i] = smin;
353
local_aabb.size[i] = smax - smin;
354
}
355
356
concave_B->cull(local_aabb, concave_callback, &cinfo, false);
357
358
return cinfo.collided;
359
}
360
361
bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
362
PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
363
PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
364
bool concave_A = p_shape_A->is_concave();
365
bool concave_B = p_shape_B->is_concave();
366
367
bool swap = false;
368
369
if (type_A > type_B) {
370
SWAP(type_A, type_B);
371
SWAP(concave_A, concave_B);
372
swap = true;
373
}
374
375
if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
376
if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
377
WARN_PRINT_ONCE("Collisions between world boundaries are not supported.");
378
return false;
379
}
380
if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
381
WARN_PRINT_ONCE("Collisions between world boundaries and rays are not supported.");
382
return false;
383
}
384
if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
385
WARN_PRINT_ONCE("Collisions between world boundaries and soft bodies are not supported.");
386
return false;
387
}
388
389
if (swap) {
390
return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A);
391
} else {
392
return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_B);
393
}
394
395
} else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
396
if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
397
WARN_PRINT_ONCE("Collisions between rays are not supported.");
398
return false;
399
}
400
401
if (swap) {
402
return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B);
403
} else {
404
return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A);
405
}
406
407
} else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
408
if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) {
409
WARN_PRINT_ONCE("Collisions between soft bodies are not supported.");
410
return false;
411
}
412
413
if (swap) {
414
return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
415
} else {
416
return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
417
}
418
419
} else if (concave_B) {
420
if (concave_A) {
421
WARN_PRINT_ONCE("Collisions between two concave shapes are not supported.");
422
return false;
423
}
424
425
if (!swap) {
426
return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
427
} else {
428
return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
429
}
430
431
} else {
432
return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
433
}
434
}
435
436
bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) {
437
_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
438
cinfo.aabb_tests++;
439
440
Vector3 close_A, close_B;
441
cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
442
443
if (cinfo.collided) {
444
// No need to process any more result.
445
return true;
446
}
447
448
if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
449
cinfo.close_A = close_A;
450
cinfo.close_B = close_B;
451
cinfo.tested = true;
452
}
453
454
cinfo.collisions++;
455
return false;
456
}
457
458
bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
459
const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
460
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
461
return false;
462
}
463
Plane p = p_transform_A.xform(world_boundary->get_plane());
464
465
static const int max_supports = 16;
466
Vector3 supports[max_supports];
467
int support_count;
468
GodotShape3D::FeatureType support_type;
469
Vector3 support_direction = p_transform_B.basis.xform_inv(-p.normal).normalized();
470
471
p_shape_B->get_supports(support_direction, max_supports, supports, support_count, support_type);
472
473
if (support_count == 0) { // This is a poor man's way to detect shapes that don't implement get_supports, such as GodotMotionShape3D.
474
Vector3 support_B = p_transform_B.xform(p_shape_B->get_support(support_direction));
475
r_point_A = p.project(support_B);
476
r_point_B = support_B;
477
bool collided = p.distance_to(support_B) <= 0;
478
return collided;
479
}
480
481
if (support_type == GodotShape3D::FEATURE_CIRCLE) {
482
ERR_FAIL_COND_V(support_count != 3, false);
483
484
Vector3 circle_pos = supports[0];
485
Vector3 circle_axis_1 = supports[1] - circle_pos;
486
Vector3 circle_axis_2 = supports[2] - circle_pos;
487
488
// Use 3 equidistant points on the circle.
489
for (int i = 0; i < 3; ++i) {
490
Vector3 vertex_pos = circle_pos;
491
vertex_pos += circle_axis_1 * Math::cos(2.0 * Math::PI * i / 3.0);
492
vertex_pos += circle_axis_2 * Math::sin(2.0 * Math::PI * i / 3.0);
493
supports[i] = vertex_pos;
494
}
495
}
496
497
bool collided = false;
498
Vector3 closest;
499
real_t closest_d = 0;
500
501
for (int i = 0; i < support_count; i++) {
502
supports[i] = p_transform_B.xform(supports[i]);
503
real_t d = p.distance_to(supports[i]);
504
if (i == 0 || d < closest_d) {
505
closest = supports[i];
506
closest_d = d;
507
if (d <= 0) {
508
collided = true;
509
}
510
}
511
}
512
513
r_point_A = p.project(closest);
514
r_point_B = closest;
515
516
return collided;
517
}
518
519
bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
520
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
521
Vector3 a, b;
522
bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
523
r_point_A = b;
524
r_point_B = a;
525
return !col;
526
527
} else if (p_shape_B->is_concave()) {
528
if (p_shape_A->is_concave()) {
529
return false;
530
}
531
532
const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
533
534
_ConcaveCollisionInfo cinfo;
535
cinfo.transform_A = &p_transform_A;
536
cinfo.shape_A = p_shape_A;
537
cinfo.transform_B = &p_transform_B;
538
cinfo.result_callback = nullptr;
539
cinfo.userdata = nullptr;
540
cinfo.swap_result = false;
541
cinfo.collided = false;
542
cinfo.collisions = 0;
543
cinfo.aabb_tests = 0;
544
cinfo.tested = false;
545
546
Transform3D rel_transform = p_transform_A;
547
rel_transform.origin -= p_transform_B.origin;
548
549
//quickly compute a local AABB
550
551
bool use_cc_hint = p_concave_hint != AABB();
552
AABB cc_hint_aabb;
553
if (use_cc_hint) {
554
cc_hint_aabb = p_concave_hint;
555
cc_hint_aabb.position -= p_transform_B.origin;
556
}
557
558
AABB local_aabb;
559
for (int i = 0; i < 3; i++) {
560
Vector3 axis(p_transform_B.basis.get_column(i));
561
real_t axis_scale = ((real_t)1.0) / axis.length();
562
axis *= axis_scale;
563
564
real_t smin, smax;
565
566
if (use_cc_hint) {
567
cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax);
568
} else {
569
p_shape_A->project_range(axis, rel_transform, smin, smax);
570
}
571
572
smin *= axis_scale;
573
smax *= axis_scale;
574
575
local_aabb.position[i] = smin;
576
local_aabb.size[i] = smax - smin;
577
}
578
579
concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false);
580
if (!cinfo.collided) {
581
r_point_A = cinfo.close_A;
582
r_point_B = cinfo.close_B;
583
}
584
585
return !cinfo.collided;
586
} else {
587
return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
588
}
589
}
590
591