Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/modules/noise/noise.h
10277 views
1
/**************************************************************************/
2
/* noise.h */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#pragma once
32
33
#include "core/io/image.h"
34
#include "core/variant/typed_array.h"
35
36
class Noise : public Resource {
37
GDCLASS(Noise, Resource);
38
39
// Helper struct for get_seamless_image(). See comments in .cpp for usage.
40
template <typename T>
41
struct img_buff {
42
T *img = nullptr;
43
int width; // Array dimensions & default modulo for image.
44
int height;
45
int offset_x; // Offset index location on image (wrapped by specified modulo).
46
int offset_y;
47
int alt_width; // Alternate module for image.
48
int alt_height;
49
50
enum ALT_MODULO {
51
DEFAULT = 0,
52
ALT_X,
53
ALT_Y,
54
ALT_XY
55
};
56
57
// Multi-dimensional array indexer (e.g. img[x][y]) that supports multiple modulos.
58
T &operator()(int x, int y, ALT_MODULO mode = DEFAULT) {
59
switch (mode) {
60
case ALT_XY:
61
return img[(x + offset_x) % alt_width + ((y + offset_y) % alt_height) * width];
62
case ALT_X:
63
return img[(x + offset_x) % alt_width + ((y + offset_y) % height) * width];
64
case ALT_Y:
65
return img[(x + offset_x) % width + ((y + offset_y) % alt_height) * width];
66
default:
67
return img[(x + offset_x) % width + ((y + offset_y) % height) * width];
68
}
69
}
70
};
71
72
union l2c {
73
uint32_t l;
74
uint8_t c[4];
75
struct {
76
uint8_t r;
77
uint8_t g;
78
uint8_t b;
79
uint8_t a;
80
};
81
};
82
83
template <typename T>
84
Vector<Ref<Image>> _generate_seamless_image(Vector<Ref<Image>> p_src, int p_width, int p_height, int p_depth, bool p_invert, real_t p_blend_skirt) const {
85
/*
86
To make a seamless image, we swap the quadrants so the edges are perfect matches.
87
We initially get a 10% larger image so we have an overlap we can use to blend over the seams.
88
89
Noise::img_buff::operator() acts as a multi-dimensional array indexer.
90
It does the array math, translates between the flipped and non-flipped quadrants, and manages offsets and modulos.
91
92
Here is how the larger source image and final output image map to each other:
93
94
Output size = p_width*p_height Source w/ extra 10% skirt `s` size = src_width*src_height
95
Q1 Q2 Q4 Q3 s1
96
Q3 Q4 Q2 Q1 s2
97
s5 s4 s3
98
99
All of the loops use output coordinates, so Output:Q1 == Source:Q1
100
Ex: Output(half_width, half_height) [the midpoint, corner of Q1/Q4] =>
101
on Source it's translated to
102
corner of Q1/s3 unless the ALT_XY modulo moves it to Q4
103
*/
104
ERR_FAIL_COND_V(p_blend_skirt < 0, Vector<Ref<Image>>());
105
106
int skirt_width = MAX(1, p_width * p_blend_skirt);
107
int skirt_height = MAX(1, p_height * p_blend_skirt);
108
int src_width = p_width + skirt_width;
109
int src_height = p_height + skirt_height;
110
int half_width = p_width * 0.5;
111
int half_height = p_height * 0.5;
112
int skirt_edge_x = half_width + skirt_width;
113
int skirt_edge_y = half_height + skirt_height;
114
115
Image::Format format = p_src[0]->get_format();
116
int pixel_size = Image::get_format_pixel_size(format);
117
118
Vector<Ref<Image>> images;
119
images.resize(p_src.size());
120
121
// First blend across x and y for all slices.
122
for (int d = 0; d < images.size(); d++) {
123
Vector<uint8_t> dest;
124
dest.resize(p_width * p_height * pixel_size);
125
126
img_buff<T> rd_src = {
127
(T *)p_src[d]->get_data().ptr(),
128
src_width, src_height,
129
half_width, half_height,
130
p_width, p_height
131
};
132
133
// `wr` is setup for straight x/y coordinate array access.
134
img_buff<T> wr = {
135
(T *)dest.ptrw(),
136
p_width, p_height,
137
0, 0, 0, 0
138
};
139
// `rd_dest` is a readable pointer to `wr`, i.e. what has already been written to the output buffer.
140
img_buff<T> rd_dest = {
141
(T *)dest.ptr(),
142
p_width, p_height,
143
0, 0, 0, 0
144
};
145
146
// Swap the quadrants to make edges seamless.
147
for (int y = 0; y < p_height; y++) {
148
for (int x = 0; x < p_width; x++) {
149
// rd_src has a half offset and the shorter modulo ignores the skirt.
150
// It reads and writes in Q1-4 order (see map above), skipping the skirt.
151
wr(x, y) = rd_src(x, y, img_buff<T>::ALT_XY);
152
}
153
}
154
155
// Blend the vertical skirt over the middle seam.
156
for (int x = half_width; x < skirt_edge_x; x++) {
157
int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(x - half_width) / float(skirt_width)));
158
for (int y = 0; y < p_height; y++) {
159
// Skip the center square
160
if (y == half_height) {
161
y = skirt_edge_y - 1;
162
} else {
163
// Starts reading at s2, ALT_Y skips s3, and continues with s1.
164
wr(x, y) = _alpha_blend<T>(rd_dest(x, y), rd_src(x, y, img_buff<T>::ALT_Y), alpha);
165
}
166
}
167
}
168
169
// Blend the horizontal skirt over the middle seam.
170
for (int y = half_height; y < skirt_edge_y; y++) {
171
int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(y - half_height) / float(skirt_height)));
172
for (int x = 0; x < p_width; x++) {
173
// Skip the center square
174
if (x == half_width) {
175
x = skirt_edge_x - 1;
176
} else {
177
// Starts reading at s4, skips s3, continues with s5.
178
wr(x, y) = _alpha_blend<T>(rd_dest(x, y), rd_src(x, y, img_buff<T>::ALT_X), alpha);
179
}
180
}
181
}
182
183
// Fill in the center square. Wr starts at the top left of Q4, which is the equivalent of the top left of s3, unless a modulo is used.
184
for (int y = half_height; y < skirt_edge_y; y++) {
185
for (int x = half_width; x < skirt_edge_x; x++) {
186
int xpos = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(x - half_width) / float(skirt_width)));
187
int ypos = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(y - half_height) / float(skirt_height)));
188
189
// Blend s3(Q1) onto s5(Q2) for the top half.
190
T top_blend = _alpha_blend<T>(rd_src(x, y, img_buff<T>::ALT_X), rd_src(x, y, img_buff<T>::DEFAULT), xpos);
191
// Blend s1(Q3) onto Q4 for the bottom half.
192
T bottom_blend = _alpha_blend<T>(rd_src(x, y, img_buff<T>::ALT_XY), rd_src(x, y, img_buff<T>::ALT_Y), xpos);
193
// Blend the top half onto the bottom half.
194
wr(x, y) = _alpha_blend<T>(bottom_blend, top_blend, ypos);
195
}
196
}
197
Ref<Image> image = memnew(Image(p_width, p_height, false, format, dest));
198
p_src.write[d].unref();
199
images.write[d] = image;
200
}
201
202
// Now blend across z.
203
if (p_depth > 1) {
204
int skirt_depth = MAX(1, p_depth * p_blend_skirt);
205
int half_depth = p_depth * 0.5;
206
int skirt_edge_z = half_depth + skirt_depth;
207
208
// Swap halves on depth.
209
for (int i = 0; i < half_depth; i++) {
210
Ref<Image> img = images[i];
211
images.write[i] = images[i + half_depth];
212
images.write[i + half_depth] = img;
213
}
214
215
Vector<Ref<Image>> new_images = images;
216
new_images.resize(p_depth);
217
218
// Scale seamless generation to third dimension.
219
for (int z = half_depth; z < skirt_edge_z; z++) {
220
int alpha = 255 * (1 - Math::smoothstep(0.1f, 0.9f, float(z - half_depth) / float(skirt_depth)));
221
222
Vector<uint8_t> img = images[z % p_depth]->get_data();
223
Vector<uint8_t> skirt = images[(z - half_depth) + p_depth]->get_data();
224
225
Vector<uint8_t> dest;
226
dest.resize(images[0]->get_width() * images[0]->get_height() * Image::get_format_pixel_size(images[0]->get_format()));
227
228
for (int i = 0; i < img.size(); i++) {
229
uint8_t fg, bg, out;
230
231
fg = skirt[i];
232
bg = img[i];
233
234
uint16_t a = alpha + 1;
235
uint16_t inv_a = 256 - alpha;
236
237
out = (uint8_t)((a * fg + inv_a * bg) >> 8);
238
239
dest.write[i] = out;
240
}
241
242
Ref<Image> new_image = memnew(Image(images[0]->get_width(), images[0]->get_height(), false, images[0]->get_format(), dest));
243
new_images.write[z % p_depth] = new_image;
244
}
245
return new_images;
246
}
247
return images;
248
}
249
250
template <typename T>
251
T _alpha_blend(T p_bg, T p_fg, int p_alpha) const {
252
l2c fg, bg, out;
253
254
fg.l = p_fg;
255
bg.l = p_bg;
256
257
uint16_t alpha;
258
uint16_t inv_alpha;
259
260
// If no alpha argument specified, use the alpha channel in the color
261
if (p_alpha == -1) {
262
alpha = fg.c[3] + 1;
263
inv_alpha = 256 - fg.c[3];
264
} else {
265
alpha = p_alpha + 1;
266
inv_alpha = 256 - p_alpha;
267
}
268
269
out.c[0] = (uint8_t)((alpha * fg.c[0] + inv_alpha * bg.c[0]) >> 8);
270
out.c[1] = (uint8_t)((alpha * fg.c[1] + inv_alpha * bg.c[1]) >> 8);
271
out.c[2] = (uint8_t)((alpha * fg.c[2] + inv_alpha * bg.c[2]) >> 8);
272
out.c[3] = 0xFF;
273
274
return out.l;
275
}
276
277
protected:
278
static void _bind_methods();
279
280
public:
281
// Virtual destructor so we can delete any Noise derived object when referenced as a Noise*.
282
virtual ~Noise() {}
283
284
virtual real_t get_noise_1d(real_t p_x) const = 0;
285
286
virtual real_t get_noise_2dv(Vector2 p_v) const = 0;
287
virtual real_t get_noise_2d(real_t p_x, real_t p_y) const = 0;
288
289
virtual real_t get_noise_3dv(Vector3 p_v) const = 0;
290
virtual real_t get_noise_3d(real_t p_x, real_t p_y, real_t p_z) const = 0;
291
292
Vector<Ref<Image>> _get_image(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_in_3d_space = false, bool p_normalize = true) const;
293
virtual Ref<Image> get_image(int p_width, int p_height, bool p_invert = false, bool p_in_3d_space = false, bool p_normalize = true) const;
294
virtual TypedArray<Image> get_image_3d(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_normalize = true) const;
295
296
Vector<Ref<Image>> _get_seamless_image(int p_width, int p_height, int p_depth, bool p_invert = false, bool p_in_3d_space = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
297
virtual Ref<Image> get_seamless_image(int p_width, int p_height, bool p_invert = false, bool p_in_3d_space = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
298
virtual TypedArray<Image> get_seamless_image_3d(int p_width, int p_height, int p_depth, bool p_invert = false, real_t p_blend_skirt = 0.1, bool p_normalize = true) const;
299
};
300
301