Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp
10279 views
1
/**************************************************************************/
2
/* renderer_scene_render_rd.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "renderer_scene_render_rd.h"
32
33
#include "core/config/project_settings.h"
34
#include "core/io/image.h"
35
#include "renderer_compositor_rd.h"
36
#include "servers/rendering/renderer_rd/environment/fog.h"
37
#include "servers/rendering/renderer_rd/shaders/decal_data_inc.glsl.gen.h"
38
#include "servers/rendering/renderer_rd/shaders/light_data_inc.glsl.gen.h"
39
#include "servers/rendering/renderer_rd/shaders/scene_data_inc.glsl.gen.h"
40
#include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
41
#include "servers/rendering/rendering_server_default.h"
42
#include "servers/rendering/shader_include_db.h"
43
#include "servers/rendering/storage/camera_attributes_storage.h"
44
45
void get_vogel_disk(float *r_kernel, int p_sample_count) {
46
const float golden_angle = 2.4;
47
48
for (int i = 0; i < p_sample_count; i++) {
49
float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
50
float theta = float(i) * golden_angle;
51
52
r_kernel[i * 4] = Math::cos(theta) * r;
53
r_kernel[i * 4 + 1] = Math::sin(theta) * r;
54
}
55
}
56
57
RID RendererSceneRenderRD::sky_allocate() {
58
return sky.allocate_sky_rid();
59
}
60
void RendererSceneRenderRD::sky_initialize(RID p_rid) {
61
sky.initialize_sky_rid(p_rid);
62
}
63
64
void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
65
sky.sky_set_radiance_size(p_sky, p_radiance_size);
66
}
67
68
void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
69
sky.sky_set_mode(p_sky, p_mode);
70
}
71
72
void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
73
sky.sky_set_material(p_sky, p_material);
74
}
75
76
Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
77
return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size);
78
}
79
80
void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
81
glow_bicubic_upscale = p_enable;
82
}
83
84
void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
85
volumetric_fog_size = p_size;
86
volumetric_fog_depth = p_depth;
87
}
88
89
void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
90
volumetric_fog_filter_active = p_enable;
91
}
92
93
void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
94
gi.sdfgi_ray_count = p_ray_count;
95
}
96
97
void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
98
gi.sdfgi_frames_to_converge = p_frames;
99
}
100
void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
101
gi.sdfgi_frames_to_update_light = p_update;
102
}
103
104
Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
105
ERR_FAIL_COND_V(p_env.is_null(), Ref<Image>());
106
107
RS::EnvironmentBG environment_background = environment_get_background(p_env);
108
109
if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) {
110
return Ref<Image>(); //nothing to bake
111
}
112
113
RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env);
114
115
bool use_ambient_light = false;
116
bool use_cube_map = false;
117
if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) {
118
use_ambient_light = true;
119
} else {
120
use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY;
121
use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR;
122
}
123
use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid());
124
125
Color ambient_color;
126
float ambient_color_sky_mix = 0.0;
127
if (use_ambient_light) {
128
ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env);
129
const float ambient_energy = environment_get_ambient_light_energy(p_env);
130
ambient_color = environment_get_ambient_light(p_env);
131
ambient_color = ambient_color.srgb_to_linear();
132
ambient_color.r *= ambient_energy;
133
ambient_color.g *= ambient_energy;
134
ambient_color.b *= ambient_energy;
135
}
136
137
if (use_cube_map) {
138
Ref<Image> panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size);
139
if (use_ambient_light && panorama.is_valid()) {
140
for (int x = 0; x < p_size.width; x++) {
141
for (int y = 0; y < p_size.height; y++) {
142
panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix));
143
}
144
}
145
}
146
return panorama;
147
} else {
148
const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env);
149
Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env));
150
panorama_color = panorama_color.srgb_to_linear();
151
panorama_color.r *= bg_energy_multiplier;
152
panorama_color.g *= bg_energy_multiplier;
153
panorama_color.b *= bg_energy_multiplier;
154
155
if (use_ambient_light) {
156
panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix);
157
}
158
159
Ref<Image> panorama = Image::create_empty(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
160
panorama->fill(panorama_color);
161
return panorama;
162
}
163
}
164
165
/* REFLECTION PROBE */
166
167
RID RendererSceneRenderRD::reflection_probe_create_framebuffer(RID p_color, RID p_depth) {
168
Vector<RID> fb;
169
fb.push_back(p_color);
170
fb.push_back(p_depth);
171
return RD::get_singleton()->framebuffer_create(fb);
172
}
173
174
/* FOG VOLUME INSTANCE */
175
176
RID RendererSceneRenderRD::fog_volume_instance_create(RID p_fog_volume) {
177
return RendererRD::Fog::get_singleton()->fog_volume_instance_create(p_fog_volume);
178
}
179
180
void RendererSceneRenderRD::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) {
181
RendererRD::Fog::get_singleton()->fog_volume_instance_set_transform(p_fog_volume_instance, p_transform);
182
}
183
184
void RendererSceneRenderRD::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) {
185
RendererRD::Fog::get_singleton()->fog_volume_instance_set_active(p_fog_volume_instance, p_active);
186
}
187
188
RID RendererSceneRenderRD::fog_volume_instance_get_volume(RID p_fog_volume_instance) const {
189
return RendererRD::Fog::get_singleton()->fog_volume_instance_get_volume(p_fog_volume_instance);
190
}
191
192
Vector3 RendererSceneRenderRD::fog_volume_instance_get_position(RID p_fog_volume_instance) const {
193
return RendererRD::Fog::get_singleton()->fog_volume_instance_get_position(p_fog_volume_instance);
194
}
195
196
/* VOXEL GI */
197
198
RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) {
199
return gi.voxel_gi_instance_create(p_base);
200
}
201
202
void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
203
if (!is_dynamic_gi_supported()) {
204
return;
205
}
206
207
gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform);
208
}
209
210
bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const {
211
if (!is_dynamic_gi_supported()) {
212
return false;
213
}
214
215
return gi.voxel_gi_needs_update(p_probe);
216
}
217
218
void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
219
if (!is_dynamic_gi_supported()) {
220
return;
221
}
222
223
gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects);
224
}
225
226
void RendererSceneRenderRD::_debug_sdfgi_probes(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms) {
227
ERR_FAIL_COND(p_render_buffers.is_null());
228
229
if (!p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
230
return; //nothing to debug
231
}
232
233
Ref<RendererRD::GI::SDFGI> sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
234
235
sdfgi->debug_probes(p_framebuffer, p_view_count, p_camera_with_transforms);
236
}
237
238
////////////////////////////////
239
Ref<RenderSceneBuffers> RendererSceneRenderRD::render_buffers_create() {
240
Ref<RenderSceneBuffersRD> rb;
241
rb.instantiate();
242
243
rb->set_can_be_storage(_render_buffers_can_be_storage());
244
rb->set_max_cluster_elements(max_cluster_elements);
245
rb->set_base_data_format(_render_buffers_get_color_format());
246
if (vrs) {
247
rb->set_vrs(vrs);
248
}
249
250
setup_render_buffer_data(rb);
251
252
return rb;
253
}
254
255
bool RendererSceneRenderRD::_compositor_effects_has_flag(const RenderDataRD *p_render_data, RS::CompositorEffectFlags p_flag, RS::CompositorEffectCallbackType p_callback_type) {
256
RendererCompositorStorage *comp_storage = RendererCompositorStorage::get_singleton();
257
258
if (p_render_data->compositor.is_null()) {
259
return false;
260
}
261
262
if (p_render_data->reflection_probe.is_valid()) {
263
return false;
264
}
265
266
ERR_FAIL_COND_V(!comp_storage->is_compositor(p_render_data->compositor), false);
267
Vector<RID> re_rids = comp_storage->compositor_get_compositor_effects(p_render_data->compositor, p_callback_type, true);
268
269
for (RID rid : re_rids) {
270
if (comp_storage->compositor_effect_get_flag(rid, p_flag)) {
271
return true;
272
}
273
}
274
275
return false;
276
}
277
278
bool RendererSceneRenderRD::_has_compositor_effect(RS::CompositorEffectCallbackType p_callback_type, const RenderDataRD *p_render_data) {
279
RendererCompositorStorage *comp_storage = RendererCompositorStorage::get_singleton();
280
281
if (p_render_data->compositor.is_null()) {
282
return false;
283
}
284
285
if (p_render_data->reflection_probe.is_valid()) {
286
return false;
287
}
288
289
ERR_FAIL_COND_V(!comp_storage->is_compositor(p_render_data->compositor), false);
290
291
Vector<RID> effects = comp_storage->compositor_get_compositor_effects(p_render_data->compositor, p_callback_type, true);
292
293
return effects.size() > 0;
294
}
295
296
void RendererSceneRenderRD::_process_compositor_effects(RS::CompositorEffectCallbackType p_callback_type, const RenderDataRD *p_render_data) {
297
RendererCompositorStorage *comp_storage = RendererCompositorStorage::get_singleton();
298
299
if (p_render_data->compositor.is_null()) {
300
return;
301
}
302
303
if (p_render_data->reflection_probe.is_valid()) {
304
return;
305
}
306
307
ERR_FAIL_COND(!comp_storage->is_compositor(p_render_data->compositor));
308
309
Vector<RID> re_rids = comp_storage->compositor_get_compositor_effects(p_render_data->compositor, p_callback_type, true);
310
311
for (RID rid : re_rids) {
312
Callable callback = comp_storage->compositor_effect_get_callback(rid);
313
Array arr = { p_callback_type, p_render_data };
314
callback.callv(arr);
315
}
316
}
317
318
void RendererSceneRenderRD::_render_buffers_ensure_screen_texture(const RenderDataRD *p_render_data) {
319
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
320
ERR_FAIL_COND(rb.is_null());
321
322
if (!rb->has_internal_texture()) {
323
// We're likely rendering reflection probes where we can't use our backbuffers.
324
return;
325
}
326
327
bool can_use_storage = _render_buffers_can_be_storage();
328
Size2i size = rb->get_internal_size();
329
330
// When upscaling, the blur texture needs to be at the target size for post-processing to work. We prefer to use a
331
// dedicated backbuffer copy texture instead if the blur texture is not an option so shader effects work correctly.
332
Size2i target_size = rb->get_target_size();
333
bool internal_size_matches = (size.width == target_size.width) && (size.height == target_size.height);
334
bool reuse_blur_texture = !rb->has_upscaled_texture() || internal_size_matches;
335
if (reuse_blur_texture) {
336
rb->allocate_blur_textures();
337
} else {
338
uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
339
usage_bits |= can_use_storage ? RD::TEXTURE_USAGE_STORAGE_BIT : RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
340
rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_COLOR, rb->get_base_data_format(), usage_bits);
341
}
342
}
343
344
void RendererSceneRenderRD::_render_buffers_copy_screen_texture(const RenderDataRD *p_render_data) {
345
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
346
ERR_FAIL_COND(rb.is_null());
347
348
if (!rb->has_internal_texture()) {
349
// We're likely rendering reflection probes where we can't use our backbuffers.
350
return;
351
}
352
353
RD::get_singleton()->draw_command_begin_label("Copy screen texture");
354
355
StringName texture_name;
356
bool can_use_storage = _render_buffers_can_be_storage();
357
Size2i size = rb->get_internal_size();
358
359
// When upscaling, the blur texture needs to be at the target size for post-processing to work. We prefer to use a
360
// dedicated backbuffer copy texture instead if the blur texture is not an option so shader effects work correctly.
361
Size2i target_size = rb->get_target_size();
362
bool internal_size_matches = (size.width == target_size.width) && (size.height == target_size.height);
363
bool reuse_blur_texture = !rb->has_upscaled_texture() || internal_size_matches;
364
if (reuse_blur_texture) {
365
texture_name = RB_TEX_BLUR_0;
366
} else {
367
texture_name = RB_TEX_BACK_COLOR;
368
}
369
370
for (uint32_t v = 0; v < rb->get_view_count(); v++) {
371
RID texture = rb->get_internal_texture(v);
372
int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, texture_name).mipmaps);
373
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, texture_name, v, 0);
374
375
if (can_use_storage) {
376
copy_effects->copy_to_rect(texture, dest, Rect2i(0, 0, size.x, size.y));
377
} else {
378
RID fb = FramebufferCacheRD::get_singleton()->get_cache(dest);
379
copy_effects->copy_to_fb_rect(texture, fb, Rect2i(0, 0, size.x, size.y));
380
}
381
382
for (int i = 1; i < mipmaps; i++) {
383
RID source = dest;
384
dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, texture_name, v, i);
385
Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, texture_name, i);
386
387
if (can_use_storage) {
388
copy_effects->make_mipmap(source, dest, msize);
389
} else {
390
copy_effects->make_mipmap_raster(source, dest, msize);
391
}
392
}
393
}
394
395
RD::get_singleton()->draw_command_end_label();
396
}
397
398
void RendererSceneRenderRD::_render_buffers_ensure_depth_texture(const RenderDataRD *p_render_data) {
399
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
400
ERR_FAIL_COND(rb.is_null());
401
402
if (!rb->has_depth_texture()) {
403
// We're likely rendering reflection probes where we can't use our backbuffers.
404
return;
405
}
406
407
// Note, this only creates our back depth texture if we haven't already created it.
408
uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
409
usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
410
usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; // Set this as color attachment because we're copying data into it, it's not actually used as a depth buffer
411
412
rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, RD::DATA_FORMAT_R32_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1);
413
}
414
415
void RendererSceneRenderRD::_render_buffers_copy_depth_texture(const RenderDataRD *p_render_data) {
416
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
417
ERR_FAIL_COND(rb.is_null());
418
419
if (!rb->has_depth_texture()) {
420
// We're likely rendering reflection probes where we can't use our backbuffers.
421
return;
422
}
423
424
RD::get_singleton()->draw_command_begin_label("Copy depth texture");
425
426
bool can_use_storage = _render_buffers_can_be_storage();
427
Size2i size = rb->get_internal_size();
428
for (uint32_t v = 0; v < p_render_data->scene_data->view_count; v++) {
429
RID depth_texture = rb->get_depth_texture(v);
430
RID depth_back_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, v, 0);
431
432
if (can_use_storage) {
433
copy_effects->copy_to_rect(depth_texture, depth_back_texture, Rect2i(0, 0, size.x, size.y));
434
} else {
435
RID depth_back_fb = FramebufferCacheRD::get_singleton()->get_cache(depth_back_texture);
436
copy_effects->copy_to_fb_rect(depth_texture, depth_back_fb, Rect2i(0, 0, size.x, size.y));
437
}
438
}
439
440
RD::get_singleton()->draw_command_end_label();
441
}
442
443
void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) {
444
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
445
446
ERR_FAIL_NULL(p_render_data);
447
448
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
449
ERR_FAIL_COND(rb.is_null());
450
451
ERR_FAIL_COND_MSG(p_render_data->reflection_probe.is_valid(), "Post processes should not be applied on reflection probes.");
452
453
// Glow, auto exposure and DoF (if enabled).
454
455
Size2i target_size = rb->get_target_size();
456
bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; // FIXME I think this should check internal size, we do all our post processing at this size...
457
can_use_effects &= _debug_draw_can_use_effects(debug_draw);
458
bool can_use_storage = _render_buffers_can_be_storage();
459
460
RS::ViewportScaling3DMode scale_mode = rb->get_scaling_3d_mode();
461
bool use_upscaled_texture = rb->has_upscaled_texture() && (scale_mode == RS::VIEWPORT_SCALING_3D_MODE_FSR2 || scale_mode == RS::VIEWPORT_SCALING_3D_MODE_METALFX_TEMPORAL);
462
SpatialUpscaler *spatial_upscaler = nullptr;
463
if (can_use_effects) {
464
if (scale_mode == RS::VIEWPORT_SCALING_3D_MODE_FSR) {
465
spatial_upscaler = fsr;
466
} else if (scale_mode == RS::VIEWPORT_SCALING_3D_MODE_METALFX_SPATIAL) {
467
#if METAL_ENABLED
468
spatial_upscaler = mfx_spatial;
469
#endif
470
}
471
}
472
473
bool use_smaa = smaa && rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_SMAA;
474
475
RID render_target = rb->get_render_target();
476
RID color_texture = use_upscaled_texture ? rb->get_upscaled_texture() : rb->get_internal_texture();
477
Size2i color_size = use_upscaled_texture ? target_size : rb->get_internal_size();
478
479
bool dest_is_msaa_2d = rb->get_view_count() == 1 && texture_storage->render_target_get_msaa(render_target) != RS::VIEWPORT_MSAA_DISABLED;
480
481
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_dof(p_render_data->camera_attributes)) {
482
RENDER_TIMESTAMP("Depth of Field");
483
RD::get_singleton()->draw_command_begin_label("DOF");
484
485
rb->allocate_blur_textures();
486
487
RendererRD::BokehDOF::BokehBuffers buffers;
488
489
// Textures we use
490
buffers.base_texture_size = color_size;
491
buffers.secondary_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 0);
492
buffers.half_texture[0] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
493
buffers.half_texture[1] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 1);
494
495
if (can_use_storage) {
496
for (uint32_t i = 0; i < rb->get_view_count(); i++) {
497
buffers.base_texture = use_upscaled_texture ? rb->get_upscaled_texture(i) : rb->get_internal_texture(i);
498
buffers.depth_texture = rb->get_depth_texture(i);
499
500
// In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustum.
501
float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
502
float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
503
bokeh_dof->bokeh_dof_compute(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
504
};
505
} else {
506
// Set framebuffers.
507
buffers.secondary_fb = rb->weight_buffers[1].fb;
508
buffers.half_fb[0] = rb->weight_buffers[2].fb;
509
buffers.half_fb[1] = rb->weight_buffers[3].fb;
510
buffers.weight_texture[0] = rb->weight_buffers[0].weight;
511
buffers.weight_texture[1] = rb->weight_buffers[1].weight;
512
buffers.weight_texture[2] = rb->weight_buffers[2].weight;
513
buffers.weight_texture[3] = rb->weight_buffers[3].weight;
514
515
// Set weight buffers.
516
buffers.base_weight_fb = rb->weight_buffers[0].fb;
517
518
for (uint32_t i = 0; i < rb->get_view_count(); i++) {
519
buffers.base_texture = use_upscaled_texture ? rb->get_upscaled_texture(i) : rb->get_internal_texture(i);
520
buffers.depth_texture = rb->get_depth_texture(i);
521
buffers.base_fb = FramebufferCacheRD::get_singleton()->get_cache(buffers.base_texture); // TODO move this into bokeh_dof_raster, we can do this internally
522
523
// In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustum.
524
float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
525
float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
526
bokeh_dof->bokeh_dof_raster(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
527
}
528
}
529
RD::get_singleton()->draw_command_end_label();
530
}
531
532
float auto_exposure_scale = 1.0;
533
534
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
535
RENDER_TIMESTAMP("Auto exposure");
536
537
RD::get_singleton()->draw_command_begin_label("Auto exposure");
538
539
Ref<RendererRD::Luminance::LuminanceBuffers> luminance_buffers = luminance->get_luminance_buffers(rb);
540
541
uint64_t auto_exposure_version = RSG::camera_attributes->camera_attributes_get_auto_exposure_version(p_render_data->camera_attributes);
542
bool set_immediate = auto_exposure_version != rb->get_auto_exposure_version();
543
rb->set_auto_exposure_version(auto_exposure_version);
544
545
double step = RSG::camera_attributes->camera_attributes_get_auto_exposure_adjust_speed(p_render_data->camera_attributes) * time_step;
546
float auto_exposure_min_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_min_sensitivity(p_render_data->camera_attributes);
547
float auto_exposure_max_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_max_sensitivity(p_render_data->camera_attributes);
548
luminance->luminance_reduction(rb->get_internal_texture(), rb->get_internal_size(), luminance_buffers, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
549
550
// Swap final reduce with prev luminance.
551
552
auto_exposure_scale = RSG::camera_attributes->camera_attributes_get_auto_exposure_scale(p_render_data->camera_attributes);
553
554
RenderingServerDefault::redraw_request(); // Redraw all the time if auto exposure rendering is on.
555
RD::get_singleton()->draw_command_end_label();
556
}
557
558
int max_glow_level = -1;
559
560
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
561
RENDER_TIMESTAMP("Glow");
562
RD::get_singleton()->draw_command_begin_label("Gaussian Glow");
563
564
rb->allocate_blur_textures();
565
566
for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
567
if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) {
568
int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps);
569
if (i >= mipmaps) {
570
max_glow_level = mipmaps - 1;
571
} else {
572
max_glow_level = i;
573
}
574
}
575
}
576
577
float luminance_multiplier = _render_buffers_get_luminance_multiplier();
578
for (uint32_t l = 0; l < rb->get_view_count(); l++) {
579
for (int i = 0; i < (max_glow_level + 1); i++) {
580
Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, i);
581
582
if (i == 0) {
583
RID luminance_texture;
584
if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
585
luminance_texture = luminance->get_current_luminance_buffer(rb); // this will return and empty RID if we don't have an auto exposure buffer
586
}
587
RID source = rb->get_internal_texture(l);
588
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
589
if (can_use_storage) {
590
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
591
} else {
592
RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
593
copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
594
}
595
} else {
596
RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1);
597
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
598
599
if (can_use_storage) {
600
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment));
601
} else {
602
RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
603
copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment));
604
}
605
}
606
}
607
}
608
609
RD::get_singleton()->draw_command_end_label();
610
}
611
612
{
613
RENDER_TIMESTAMP("Tonemap");
614
RD::get_singleton()->draw_command_begin_label("Tonemap");
615
616
RendererRD::ToneMapper::TonemapSettings tonemap;
617
618
bool using_hdr = texture_storage->render_target_is_using_hdr(render_target);
619
620
tonemap.exposure_texture = luminance->get_current_luminance_buffer(rb);
621
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && tonemap.exposure_texture.is_valid()) {
622
tonemap.use_auto_exposure = true;
623
tonemap.auto_exposure_scale = auto_exposure_scale;
624
} else {
625
tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
626
}
627
628
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
629
tonemap.use_glow = true;
630
tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment));
631
tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment);
632
for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
633
tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i];
634
}
635
636
Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0);
637
tonemap.glow_texture_size.x = msize.width;
638
tonemap.glow_texture_size.y = msize.height;
639
tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
640
tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1);
641
if (environment_get_glow_map(p_render_data->environment).is_valid()) {
642
tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment);
643
tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment));
644
} else {
645
tonemap.glow_map_strength = 0.0f;
646
tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
647
}
648
649
} else {
650
tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
651
tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
652
}
653
654
if (rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
655
tonemap.use_fxaa = true;
656
}
657
658
tonemap.texture_size = Vector2i(color_size.x, color_size.y);
659
660
if (p_render_data->environment.is_valid()) {
661
tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
662
tonemap.white = environment_get_white(p_render_data->environment);
663
tonemap.exposure = environment_get_exposure(p_render_data->environment);
664
}
665
666
tonemap.use_color_correction = false;
667
tonemap.use_1d_color_correction = false;
668
tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
669
tonemap.convert_to_srgb = !using_hdr;
670
671
if (can_use_effects && p_render_data->environment.is_valid()) {
672
tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
673
tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
674
tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
675
tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
676
if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
677
tonemap.use_color_correction = true;
678
tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
679
tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment), !tonemap.convert_to_srgb);
680
}
681
}
682
683
tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
684
tonemap.view_count = rb->get_view_count();
685
686
RID dest_fb;
687
RD::DataFormat dest_fb_format;
688
RD::DataFormat format_for_debanding;
689
if (spatial_upscaler != nullptr || use_smaa) {
690
// If we use a spatial upscaler to upscale or SMAA to antialias we need to write our result into an intermediate buffer.
691
// Note that this is cached so we only create the texture the first time.
692
dest_fb_format = _render_buffers_get_color_format();
693
RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), dest_fb_format, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT, RD::TEXTURE_SAMPLES_1, Size2i(), 0, 1, true, true);
694
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
695
if (use_smaa) {
696
format_for_debanding = dest_fb_format;
697
} else {
698
// Debanding is currently not supported when using spatial upscaling, so apply it before scaling.
699
// This produces suboptimal results because the image will be modified by spatial upscaling after
700
// debanding has been applied. Ideally, debanding should be applied as the final step before quantization
701
// to integer values, but in the case of MetalFX, it may not be worth the performance cost of creating a new
702
// intermediate buffer. In the case of FSR 1.0, the work of adding debanding support hasn't been done yet.
703
// Assume that the DataFormat that will be used by spatial_upscaler is the same as render_target_get_color_format.
704
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
705
}
706
} else {
707
// If we do a bilinear upscale we just render into our render target and our shader will upscale automatically.
708
// Target size in this case is lying as we never get our real target size communicated.
709
// Bit nasty but...
710
711
if (dest_is_msaa_2d) {
712
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(texture_storage->render_target_get_rd_texture_msaa(render_target));
713
// Assume that the DataFormat of render_target_get_rd_texture_msaa is the same as render_target_get_color_format.
714
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
715
texture_storage->render_target_set_msaa_needs_resolve(render_target, true); // Make sure this gets resolved.
716
} else {
717
dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
718
// Assume that the DataFormat of render_target_get_rd_framebuffer is the same as render_target_get_color_format.
719
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
720
}
721
}
722
723
if (rb->get_use_debanding()) {
724
if (_is_8bit_data_format(format_for_debanding)) {
725
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_8_BIT;
726
} else if (_is_10bit_data_format(format_for_debanding)) {
727
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_10_BIT;
728
} else {
729
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit or SMAA, for example.)
730
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
731
}
732
} else {
733
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
734
}
735
736
tone_mapper->tonemapper(color_texture, dest_fb, tonemap);
737
738
RD::get_singleton()->draw_command_end_label();
739
}
740
741
if (use_smaa) {
742
RENDER_TIMESTAMP("SMAA");
743
RD::get_singleton()->draw_command_begin_label("SMAA");
744
745
bool using_hdr = texture_storage->render_target_is_using_hdr(render_target);
746
RID dest_fb;
747
if (spatial_upscaler) {
748
rb->create_texture(SNAME("SMAA"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT, RD::TEXTURE_SAMPLES_1, Size2i(), 0, 1, true, true);
749
}
750
if (rb->get_view_count() > 1) {
751
for (uint32_t v = 0; v < rb->get_view_count(); v++) {
752
RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0);
753
754
RID dest_texture;
755
RD::DataFormat format_for_debanding;
756
if (spatial_upscaler) {
757
dest_texture = rb->get_texture_slice(SNAME("SMAA"), SNAME("destination"), v, 0);
758
// Debanding is currently not supported when using spatial upscaling, so apply it before scaling.
759
// This produces suboptimal results because the image will be modified by spatial upscaling after
760
// debanding has been applied. Ideally, debanding should be applied as the final step before quantization
761
// to integer values, but in the case of MetalFX, it may not be worth the performance cost of creating a new
762
// intermediate buffer. In the case of FSR 1.0, the work of adding debanding support hasn't been done yet.
763
// Assume that the DataFormat that will be used by spatial_upscaler is the same as render_target_get_color_format.
764
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
765
} else {
766
dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v);
767
// Assume that the DataFormat is the same as render_target_get_color_format.
768
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
769
}
770
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
771
772
if (rb->get_use_debanding()) {
773
if (_is_8bit_data_format(format_for_debanding)) {
774
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_8_BIT;
775
} else if (_is_10bit_data_format(format_for_debanding)) {
776
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_10_BIT;
777
} else {
778
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit, for example.)
779
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
780
}
781
} else {
782
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
783
}
784
785
smaa->process(rb, source_texture, dest_fb);
786
}
787
} else {
788
RID source_texture = rb->get_texture(SNAME("Tonemapper"), SNAME("destination"));
789
RD::DataFormat format_for_debanding;
790
791
if (spatial_upscaler) {
792
RID dest_texture = rb->create_texture(SNAME("SMAA"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT, RD::TEXTURE_SAMPLES_1, Size2i(), 0, 1, true, true);
793
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
794
// Debanding is currently not supported when using spatial upscaling, so apply it before scaling.
795
// This produces suboptimal results because the image will be modified by spatial upscaling after
796
// debanding has been applied. Ideally, debanding should be applied as the final step before quantization
797
// to integer values, but in the case of MetalFX, it may not be worth the performance cost of creating a new
798
// intermediate buffer. In the case of FSR 1.0, the work of adding debanding support hasn't been done yet.
799
// Assume that the DataFormat that will be used by spatial_upscaler is the same as render_target_get_color_format.
800
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
801
} else {
802
if (dest_is_msaa_2d) {
803
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(texture_storage->render_target_get_rd_texture_msaa(render_target));
804
// Assume that the DataFormat of render_target_get_rd_texture_msaa is the same as render_target_get_color_format.
805
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
806
texture_storage->render_target_set_msaa_needs_resolve(render_target, true); // Make sure this gets resolved.
807
} else {
808
dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
809
// Assume that the DataFormat of render_target_get_rd_framebuffer is the same as render_target_get_color_format.
810
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
811
}
812
}
813
814
if (rb->get_use_debanding()) {
815
if (_is_8bit_data_format(format_for_debanding)) {
816
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_8_BIT;
817
} else if (_is_10bit_data_format(format_for_debanding)) {
818
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_10_BIT;
819
} else {
820
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit, for example.)
821
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
822
}
823
} else {
824
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
825
}
826
827
smaa->process(rb, source_texture, dest_fb);
828
}
829
830
RD::get_singleton()->draw_command_end_label();
831
}
832
833
if (rb.is_valid() && spatial_upscaler) {
834
spatial_upscaler->ensure_context(rb);
835
836
RD::get_singleton()->draw_command_begin_label(spatial_upscaler->get_label());
837
838
for (uint32_t v = 0; v < rb->get_view_count(); v++) {
839
RID source_texture;
840
if (use_smaa) {
841
source_texture = rb->get_texture_slice(SNAME("SMAA"), SNAME("destination"), v, 0);
842
} else {
843
source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0);
844
}
845
RID dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v);
846
847
spatial_upscaler->process(rb, source_texture, dest_texture);
848
}
849
850
if (dest_is_msaa_2d) {
851
// We can't upscale directly into our MSAA buffer so we need to do a copy
852
RID source_texture = texture_storage->render_target_get_rd_texture(render_target);
853
RID dest_fb = FramebufferCacheRD::get_singleton()->get_cache(texture_storage->render_target_get_rd_texture_msaa(render_target));
854
copy_effects->copy_to_fb_rect(source_texture, dest_fb, Rect2i(Point2i(), rb->get_target_size()));
855
856
texture_storage->render_target_set_msaa_needs_resolve(render_target, true); // Make sure this gets resolved.
857
}
858
859
RD::get_singleton()->draw_command_end_label();
860
}
861
862
texture_storage->render_target_disable_clear_request(render_target);
863
}
864
865
void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data) {
866
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
867
RD::get_singleton()->draw_command_begin_label("Post Process Subpass");
868
869
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
870
ERR_FAIL_COND(rb.is_null());
871
872
// FIXME: Our input it our internal_texture, shouldn't this be using internal_size ??
873
// Seeing we don't support FSR in our mobile renderer right now target_size = internal_size...
874
Size2i target_size = rb->get_target_size();
875
bool can_use_effects = target_size.x >= 8 && target_size.y >= 8 && debug_draw == RS::VIEWPORT_DEBUG_DRAW_DISABLED;
876
877
RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass();
878
879
RendererRD::ToneMapper::TonemapSettings tonemap;
880
881
if (p_render_data->environment.is_valid()) {
882
tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
883
tonemap.exposure = environment_get_exposure(p_render_data->environment);
884
tonemap.white = environment_get_white(p_render_data->environment);
885
}
886
887
// We don't support glow or auto exposure here, if they are needed, don't use subpasses!
888
// The problem is that we need to use the result so far and process them before we can
889
// apply this to our results.
890
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
891
ERR_FAIL_MSG("Glow is not supported when using subpasses.");
892
}
893
894
if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
895
ERR_FAIL_MSG("Auto Exposure is not supported when using subpasses.");
896
}
897
898
bool using_hdr = texture_storage->render_target_is_using_hdr(rb->get_render_target());
899
900
tonemap.use_glow = false;
901
tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
902
tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
903
tonemap.use_auto_exposure = false;
904
tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
905
906
tonemap.use_color_correction = false;
907
tonemap.use_1d_color_correction = false;
908
tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
909
tonemap.convert_to_srgb = !using_hdr;
910
911
if (can_use_effects && p_render_data->environment.is_valid()) {
912
tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
913
tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
914
tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
915
tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
916
if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
917
tonemap.use_color_correction = true;
918
tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
919
tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment), !tonemap.convert_to_srgb);
920
}
921
}
922
923
tonemap.texture_size = Vector2i(target_size.x, target_size.y);
924
925
tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
926
tonemap.view_count = rb->get_view_count();
927
928
if (rb->get_use_debanding()) {
929
// Assume that the DataFormat of p_framebuffer is the same as render_target_get_color_format.
930
RD::DataFormat dest_fb_format = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
931
if (dest_fb_format >= RD::DATA_FORMAT_R8_UNORM && dest_fb_format <= RD::DATA_FORMAT_A8B8G8R8_SRGB_PACK32) {
932
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_8_BIT;
933
} else if (dest_fb_format >= RD::DATA_FORMAT_A2R10G10B10_UNORM_PACK32 && dest_fb_format <= RD::DATA_FORMAT_A2B10G10R10_SINT_PACK32) {
934
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_10_BIT;
935
} else {
936
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit, for example.)
937
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
938
}
939
} else {
940
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
941
}
942
943
tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap);
944
945
RD::get_singleton()->draw_command_end_label();
946
}
947
948
void RendererSceneRenderRD::_disable_clear_request(const RenderDataRD *p_render_data) {
949
ERR_FAIL_COND(p_render_data->render_buffers.is_null());
950
951
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
952
texture_storage->render_target_disable_clear_request(p_render_data->render_buffers->get_render_target());
953
}
954
955
bool RendererSceneRenderRD::_debug_draw_can_use_effects(RS::ViewportDebugDraw p_debug_draw) {
956
bool can_use_effects = true;
957
switch (p_debug_draw) {
958
// No debug draw, use camera effects
959
case RS::VIEWPORT_DEBUG_DRAW_DISABLED:
960
can_use_effects = true;
961
break;
962
// Modes that completely override rendering to draw debug information should disable camera effects.
963
case RS::VIEWPORT_DEBUG_DRAW_UNSHADED:
964
case RS::VIEWPORT_DEBUG_DRAW_OVERDRAW:
965
case RS::VIEWPORT_DEBUG_DRAW_WIREFRAME:
966
case RS::VIEWPORT_DEBUG_DRAW_VOXEL_GI_ALBEDO:
967
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
968
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
969
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
970
case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
971
case RS::VIEWPORT_DEBUG_DRAW_INTERNAL_BUFFER:
972
can_use_effects = false;
973
break;
974
// Modes that draws information over part of the viewport needs camera effects because we see partially the normal draw mode.
975
case RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS:
976
case RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS:
977
case RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS:
978
case RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS:
979
// Modes that draws a buffer over viewport needs camera effects because if the buffer is not available it will be equivalent to normal draw mode.
980
case RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER:
981
case RS::VIEWPORT_DEBUG_DRAW_SSAO:
982
case RS::VIEWPORT_DEBUG_DRAW_SSIL:
983
case RS::VIEWPORT_DEBUG_DRAW_SDFGI:
984
case RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER:
985
case RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS:
986
can_use_effects = true;
987
break;
988
// Other debug draw modes keep camera effects.
989
case RS::VIEWPORT_DEBUG_DRAW_LIGHTING:
990
case RS::VIEWPORT_DEBUG_DRAW_VOXEL_GI_LIGHTING:
991
case RS::VIEWPORT_DEBUG_DRAW_VOXEL_GI_EMISSION:
992
case RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE:
993
case RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS:
994
case RS::VIEWPORT_DEBUG_DRAW_SDFGI_PROBES:
995
case RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD:
996
can_use_effects = true;
997
break;
998
default:
999
break;
1000
}
1001
1002
return can_use_effects;
1003
}
1004
1005
void RendererSceneRenderRD::_render_buffers_debug_draw(const RenderDataRD *p_render_data) {
1006
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
1007
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
1008
1009
Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
1010
ERR_FAIL_COND(rb.is_null());
1011
1012
RID render_target = rb->get_render_target();
1013
1014
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
1015
if (p_render_data->shadow_atlas.is_valid()) {
1016
RID shadow_atlas_texture = RendererRD::LightStorage::get_singleton()->shadow_atlas_get_texture(p_render_data->shadow_atlas);
1017
1018
if (shadow_atlas_texture.is_null()) {
1019
shadow_atlas_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
1020
}
1021
1022
Size2 rtsize = texture_storage->render_target_get_size(render_target);
1023
copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
1024
}
1025
}
1026
1027
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
1028
if (RendererRD::LightStorage::get_singleton()->directional_shadow_get_texture().is_valid()) {
1029
RID shadow_atlas_texture = RendererRD::LightStorage::get_singleton()->directional_shadow_get_texture();
1030
Size2i rtsize = texture_storage->render_target_get_size(render_target);
1031
RID dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
1032
1033
// Determine our display size, try and keep square by using the smallest edge.
1034
Size2i size = 2 * rtsize / 3;
1035
if (size.x < size.y) {
1036
size.y = size.x;
1037
} else if (size.y < size.x) {
1038
size.x = size.y;
1039
}
1040
1041
copy_effects->copy_to_fb_rect(shadow_atlas_texture, dest_fb, Rect2i(Vector2(), size), false, true);
1042
1043
// Visualize our view frustum to show coverage.
1044
for (int i = 0; i < p_render_data->render_shadow_count; i++) {
1045
RID light = p_render_data->render_shadows[i].light;
1046
RID base = light_storage->light_instance_get_base_light(light);
1047
1048
if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) {
1049
debug_effects->draw_shadow_frustum(light, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, dest_fb, Rect2(Size2(), size));
1050
}
1051
}
1052
}
1053
}
1054
1055
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
1056
RID decal_atlas = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture();
1057
1058
if (decal_atlas.is_valid()) {
1059
Size2i rtsize = texture_storage->render_target_get_size(render_target);
1060
1061
copy_effects->copy_to_fb_rect(decal_atlas, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
1062
}
1063
}
1064
1065
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
1066
RID luminance_texture = luminance->get_current_luminance_buffer(rb);
1067
if (luminance_texture.is_valid()) {
1068
Size2i rtsize = texture_storage->render_target_get_size(render_target);
1069
1070
copy_effects->copy_to_fb_rect(luminance_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize / 8), false, true);
1071
}
1072
}
1073
1074
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_INTERNAL_BUFFER) {
1075
Size2 rtsize = texture_storage->render_target_get_size(render_target);
1076
copy_effects->copy_to_fb_rect(rb->get_internal_texture(), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
1077
}
1078
1079
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(rb).is_valid()) {
1080
Size2 rtsize = texture_storage->render_target_get_size(render_target);
1081
copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(rb), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, false, RID(), false, false, false, true);
1082
}
1083
1084
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {
1085
if (p_render_data->occluder_debug_tex.is_valid()) {
1086
Size2i rtsize = texture_storage->render_target_get_size(render_target);
1087
copy_effects->copy_to_fb_rect(texture_storage->texture_get_rd_texture(p_render_data->occluder_debug_tex), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize), true, false);
1088
}
1089
}
1090
1091
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS && _render_buffers_get_velocity_texture(rb).is_valid()) {
1092
RID velocity = _render_buffers_get_velocity_texture(rb);
1093
RID depth = rb->get_depth_texture();
1094
RID dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
1095
Size2i resolution = rb->get_internal_size();
1096
1097
debug_effects->draw_motion_vectors(velocity, depth, dest_fb, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, p_render_data->scene_data->prev_cam_projection, p_render_data->scene_data->prev_cam_transform, resolution);
1098
}
1099
}
1100
1101
RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() {
1102
return gi.default_voxel_gi_buffer;
1103
}
1104
1105
float RendererSceneRenderRD::_render_buffers_get_luminance_multiplier() {
1106
return 1.0;
1107
}
1108
1109
RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() {
1110
return RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
1111
}
1112
1113
bool RendererSceneRenderRD::_render_buffers_can_be_storage() {
1114
return true;
1115
}
1116
1117
void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
1118
gi.half_resolution = p_enable;
1119
}
1120
1121
void RendererSceneRenderRD::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
1122
ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
1123
1124
if (shadows_quality != p_quality) {
1125
shadows_quality = p_quality;
1126
1127
switch (shadows_quality) {
1128
case RS::SHADOW_QUALITY_HARD: {
1129
penumbra_shadow_samples = 4;
1130
soft_shadow_samples = 0;
1131
shadows_quality_radius = 1.0;
1132
} break;
1133
case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
1134
penumbra_shadow_samples = 4;
1135
soft_shadow_samples = 1;
1136
shadows_quality_radius = 1.5;
1137
} break;
1138
case RS::SHADOW_QUALITY_SOFT_LOW: {
1139
penumbra_shadow_samples = 8;
1140
soft_shadow_samples = 4;
1141
shadows_quality_radius = 2.0;
1142
} break;
1143
case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
1144
penumbra_shadow_samples = 12;
1145
soft_shadow_samples = 8;
1146
shadows_quality_radius = 2.0;
1147
} break;
1148
case RS::SHADOW_QUALITY_SOFT_HIGH: {
1149
penumbra_shadow_samples = 24;
1150
soft_shadow_samples = 16;
1151
shadows_quality_radius = 3.0;
1152
} break;
1153
case RS::SHADOW_QUALITY_SOFT_ULTRA: {
1154
penumbra_shadow_samples = 32;
1155
soft_shadow_samples = 32;
1156
shadows_quality_radius = 4.0;
1157
} break;
1158
case RS::SHADOW_QUALITY_MAX:
1159
break;
1160
}
1161
get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
1162
get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
1163
}
1164
1165
_update_shader_quality_settings();
1166
}
1167
1168
void RendererSceneRenderRD::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
1169
ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
1170
1171
if (directional_shadow_quality != p_quality) {
1172
directional_shadow_quality = p_quality;
1173
1174
switch (directional_shadow_quality) {
1175
case RS::SHADOW_QUALITY_HARD: {
1176
directional_penumbra_shadow_samples = 4;
1177
directional_soft_shadow_samples = 0;
1178
directional_shadow_quality_radius = 1.0;
1179
} break;
1180
case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
1181
directional_penumbra_shadow_samples = 4;
1182
directional_soft_shadow_samples = 1;
1183
directional_shadow_quality_radius = 1.5;
1184
} break;
1185
case RS::SHADOW_QUALITY_SOFT_LOW: {
1186
directional_penumbra_shadow_samples = 8;
1187
directional_soft_shadow_samples = 4;
1188
directional_shadow_quality_radius = 2.0;
1189
} break;
1190
case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
1191
directional_penumbra_shadow_samples = 12;
1192
directional_soft_shadow_samples = 8;
1193
directional_shadow_quality_radius = 2.0;
1194
} break;
1195
case RS::SHADOW_QUALITY_SOFT_HIGH: {
1196
directional_penumbra_shadow_samples = 24;
1197
directional_soft_shadow_samples = 16;
1198
directional_shadow_quality_radius = 3.0;
1199
} break;
1200
case RS::SHADOW_QUALITY_SOFT_ULTRA: {
1201
directional_penumbra_shadow_samples = 32;
1202
directional_soft_shadow_samples = 32;
1203
directional_shadow_quality_radius = 4.0;
1204
} break;
1205
case RS::SHADOW_QUALITY_MAX:
1206
break;
1207
}
1208
get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
1209
get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
1210
}
1211
1212
_update_shader_quality_settings();
1213
}
1214
1215
void RendererSceneRenderRD::decals_set_filter(RenderingServer::DecalFilter p_filter) {
1216
if (decals_filter == p_filter) {
1217
return;
1218
}
1219
decals_filter = p_filter;
1220
_update_shader_quality_settings();
1221
}
1222
void RendererSceneRenderRD::light_projectors_set_filter(RenderingServer::LightProjectorFilter p_filter) {
1223
if (light_projectors_filter == p_filter) {
1224
return;
1225
}
1226
light_projectors_filter = p_filter;
1227
_update_shader_quality_settings();
1228
}
1229
1230
void RendererSceneRenderRD::lightmaps_set_bicubic_filter(bool p_enable) {
1231
if (lightmap_filter_bicubic == p_enable) {
1232
return;
1233
}
1234
lightmap_filter_bicubic = p_enable;
1235
_update_shader_quality_settings();
1236
}
1237
1238
int RendererSceneRenderRD::get_roughness_layers() const {
1239
return sky.roughness_layers;
1240
}
1241
1242
bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
1243
return sky.sky_use_cubemap_array;
1244
}
1245
1246
void RendererSceneRenderRD::_update_vrs(Ref<RenderSceneBuffersRD> p_render_buffers) {
1247
if (p_render_buffers.is_null()) {
1248
return;
1249
}
1250
1251
RID render_target = p_render_buffers->get_render_target();
1252
if (render_target.is_null()) {
1253
// must be rendering reflection probes
1254
return;
1255
}
1256
1257
if (vrs) {
1258
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
1259
1260
RS::ViewportVRSMode vrs_mode = texture_storage->render_target_get_vrs_mode(render_target);
1261
if (vrs_mode != RS::VIEWPORT_VRS_DISABLED) {
1262
RID vrs_texture = p_render_buffers->get_texture(RB_SCOPE_VRS, RB_TEXTURE);
1263
1264
// We use get_cache_multipass instead of get_cache_multiview because the default behavior is for
1265
// our vrs_texture to be used as the VRS attachment. In this particular case we're writing to it
1266
// so it needs to be set as our color attachment
1267
1268
Vector<RID> textures;
1269
textures.push_back(vrs_texture);
1270
1271
Vector<RD::FramebufferPass> passes;
1272
RD::FramebufferPass pass;
1273
pass.color_attachments.push_back(0);
1274
passes.push_back(pass);
1275
1276
RID vrs_fb = FramebufferCacheRD::get_singleton()->get_cache_multipass(textures, passes, p_render_buffers->get_view_count());
1277
1278
vrs->update_vrs_texture(vrs_fb, p_render_buffers->get_render_target());
1279
}
1280
}
1281
}
1282
1283
bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
1284
if (p_render_data->render_buffers.is_valid()) {
1285
if (p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
1286
return true;
1287
}
1288
}
1289
return false;
1290
}
1291
1292
void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
1293
if (p_render_data->render_buffers.is_valid() && p_use_gi) {
1294
if (!p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
1295
return;
1296
}
1297
1298
Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
1299
sdfgi->update_probes(p_render_data->environment, sky.sky_owner.get_or_null(environment_get_sky(p_render_data->environment)));
1300
}
1301
}
1302
1303
void RendererSceneRenderRD::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_compositor, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
1304
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
1305
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
1306
1307
// getting this here now so we can direct call a bunch of things more easily
1308
ERR_FAIL_COND(p_render_buffers.is_null());
1309
Ref<RenderSceneBuffersRD> rb = p_render_buffers;
1310
ERR_FAIL_COND(rb.is_null());
1311
1312
// setup scene data
1313
RenderSceneDataRD scene_data;
1314
{
1315
// Our first camera is used by default
1316
scene_data.cam_transform = p_camera_data->main_transform;
1317
scene_data.cam_projection = p_camera_data->main_projection;
1318
scene_data.cam_orthogonal = p_camera_data->is_orthogonal;
1319
scene_data.cam_frustum = p_camera_data->is_frustum;
1320
scene_data.camera_visible_layers = p_camera_data->visible_layers;
1321
scene_data.taa_jitter = p_camera_data->taa_jitter;
1322
scene_data.taa_frame_count = p_camera_data->taa_frame_count;
1323
scene_data.main_cam_transform = p_camera_data->main_transform;
1324
scene_data.flip_y = !p_reflection_probe.is_valid();
1325
1326
scene_data.view_count = p_camera_data->view_count;
1327
for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
1328
scene_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin;
1329
scene_data.view_projection[v] = p_camera_data->view_projection[v];
1330
}
1331
1332
scene_data.prev_cam_transform = p_prev_camera_data->main_transform;
1333
scene_data.prev_cam_projection = p_prev_camera_data->main_projection;
1334
scene_data.prev_taa_jitter = p_prev_camera_data->taa_jitter;
1335
1336
for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
1337
scene_data.prev_view_projection[v] = p_prev_camera_data->view_projection[v];
1338
}
1339
1340
scene_data.z_near = p_camera_data->main_projection.get_z_near();
1341
scene_data.z_far = p_camera_data->main_projection.get_z_far();
1342
1343
// this should be the same for all cameras..
1344
const float lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
1345
1346
// Also, take into account resolution scaling for the multiplier, since we have more leeway with quality
1347
// degradation visibility. Conversely, allow upwards scaling, too, for increased mesh detail at high res.
1348
const float scaling_3d_scale = GLOBAL_GET_CACHED(float, "rendering/scaling_3d/scale");
1349
scene_data.lod_distance_multiplier = lod_distance_multiplier * (1.0 / scaling_3d_scale);
1350
1351
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
1352
scene_data.screen_mesh_lod_threshold = 0.0;
1353
} else {
1354
scene_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
1355
}
1356
1357
if (p_shadow_atlas.is_valid()) {
1358
int shadow_atlas_size = light_storage->shadow_atlas_get_size(p_shadow_atlas);
1359
scene_data.shadow_atlas_pixel_size.x = 1.0 / shadow_atlas_size;
1360
scene_data.shadow_atlas_pixel_size.y = 1.0 / shadow_atlas_size;
1361
}
1362
{
1363
int directional_shadow_size = light_storage->directional_shadow_get_size();
1364
scene_data.directional_shadow_pixel_size.x = 1.0 / directional_shadow_size;
1365
scene_data.directional_shadow_pixel_size.y = 1.0 / directional_shadow_size;
1366
}
1367
1368
scene_data.time = time;
1369
scene_data.time_step = time_step;
1370
}
1371
1372
//assign render data
1373
RenderDataRD render_data;
1374
{
1375
render_data.render_buffers = rb;
1376
render_data.scene_data = &scene_data;
1377
1378
render_data.instances = &p_instances;
1379
render_data.lights = &p_lights;
1380
render_data.reflection_probes = &p_reflection_probes;
1381
render_data.voxel_gi_instances = &p_voxel_gi_instances;
1382
render_data.decals = &p_decals;
1383
render_data.lightmaps = &p_lightmaps;
1384
render_data.fog_volumes = &p_fog_volumes;
1385
render_data.environment = p_environment;
1386
render_data.compositor = p_compositor;
1387
render_data.camera_attributes = p_camera_attributes;
1388
render_data.shadow_atlas = p_shadow_atlas;
1389
render_data.occluder_debug_tex = p_occluder_debug_tex;
1390
render_data.reflection_atlas = p_reflection_atlas;
1391
render_data.reflection_probe = p_reflection_probe;
1392
render_data.reflection_probe_pass = p_reflection_probe_pass;
1393
1394
render_data.render_shadows = p_render_shadows;
1395
render_data.render_shadow_count = p_render_shadow_count;
1396
render_data.render_sdfgi_regions = p_render_sdfgi_regions;
1397
render_data.render_sdfgi_region_count = p_render_sdfgi_region_count;
1398
render_data.sdfgi_update_data = p_sdfgi_update_data;
1399
1400
render_data.render_info = r_render_info;
1401
1402
if (p_render_buffers.is_valid() && p_reflection_probe.is_null()) {
1403
render_data.transparent_bg = texture_storage->render_target_get_transparent(rb->get_render_target());
1404
render_data.render_region = texture_storage->render_target_get_render_region(rb->get_render_target());
1405
}
1406
}
1407
1408
PagedArray<RID> empty;
1409
1410
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED || get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
1411
render_data.lights = &empty;
1412
render_data.reflection_probes = &empty;
1413
render_data.voxel_gi_instances = &empty;
1414
render_data.lightmaps = &empty;
1415
}
1416
1417
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED ||
1418
get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW ||
1419
get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_LIGHTING ||
1420
get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
1421
render_data.decals = &empty;
1422
}
1423
1424
Color clear_color;
1425
if (p_render_buffers.is_valid() && p_reflection_probe.is_null()) {
1426
clear_color = texture_storage->render_target_get_clear_request_color(rb->get_render_target());
1427
} else {
1428
clear_color = RSG::texture_storage->get_default_clear_color();
1429
}
1430
1431
//calls _pre_opaque_render between depth pre-pass and opaque pass
1432
_render_scene(&render_data, clear_color);
1433
}
1434
1435
void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
1436
_render_material(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_instances, p_framebuffer, p_region, 1.0);
1437
}
1438
1439
void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) {
1440
RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton();
1441
1442
ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider));
1443
Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
1444
Projection cm;
1445
cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
1446
1447
Vector3 cam_pos = p_transform.origin;
1448
cam_pos.y += extents.y;
1449
1450
Transform3D cam_xform;
1451
cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized());
1452
1453
RID fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider);
1454
1455
_render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
1456
}
1457
1458
bool RendererSceneRenderRD::free(RID p_rid) {
1459
if (is_environment(p_rid)) {
1460
environment_free(p_rid);
1461
} else if (is_compositor(p_rid)) {
1462
compositor_free(p_rid);
1463
} else if (is_compositor_effect(p_rid)) {
1464
compositor_effect_free(p_rid);
1465
} else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) {
1466
RSG::camera_attributes->camera_attributes_free(p_rid);
1467
} else if (gi.voxel_gi_instance_owns(p_rid)) {
1468
gi.voxel_gi_instance_free(p_rid);
1469
} else if (sky.sky_owner.owns(p_rid)) {
1470
sky.update_dirty_skys();
1471
sky.free_sky(p_rid);
1472
} else if (RendererRD::Fog::get_singleton()->owns_fog_volume_instance(p_rid)) {
1473
RendererRD::Fog::get_singleton()->fog_instance_free(p_rid);
1474
} else {
1475
return false;
1476
}
1477
1478
return true;
1479
}
1480
1481
void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
1482
debug_draw = p_debug_draw;
1483
}
1484
1485
void RendererSceneRenderRD::update() {
1486
sky.update_dirty_skys();
1487
}
1488
1489
void RendererSceneRenderRD::set_time(double p_time, double p_step) {
1490
time = p_time;
1491
time_step = p_step;
1492
}
1493
1494
void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
1495
screen_space_roughness_limiter = p_enable;
1496
screen_space_roughness_limiter_amount = p_amount;
1497
screen_space_roughness_limiter_limit = p_limit;
1498
}
1499
1500
bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
1501
return screen_space_roughness_limiter;
1502
}
1503
1504
float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
1505
return screen_space_roughness_limiter_amount;
1506
}
1507
1508
float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
1509
return screen_space_roughness_limiter_limit;
1510
}
1511
1512
TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
1513
ERR_FAIL_COND_V_MSG(p_image_size.width <= 0, TypedArray<Image>(), "Image width must be greater than 0.");
1514
ERR_FAIL_COND_V_MSG(p_image_size.height <= 0, TypedArray<Image>(), "Image height must be greater than 0.");
1515
RD::TextureFormat tf;
1516
tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
1517
tf.width = p_image_size.width; // Always 64x64
1518
tf.height = p_image_size.height;
1519
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
1520
1521
RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
1522
RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
1523
RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
1524
1525
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
1526
RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
1527
1528
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
1529
RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
1530
1531
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
1532
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
1533
RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
1534
1535
Vector<RID> fb_tex;
1536
fb_tex.push_back(albedo_alpha_tex);
1537
fb_tex.push_back(normal_tex);
1538
fb_tex.push_back(orm_tex);
1539
fb_tex.push_back(emission_tex);
1540
fb_tex.push_back(depth_write_tex);
1541
fb_tex.push_back(depth_tex);
1542
1543
RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
1544
1545
//RID sampled_light;
1546
1547
RenderGeometryInstance *gi_inst = geometry_instance_create(p_base);
1548
ERR_FAIL_NULL_V(gi_inst, TypedArray<Image>());
1549
1550
uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base);
1551
Vector<RID> materials;
1552
materials.resize(sc);
1553
1554
for (uint32_t i = 0; i < sc; i++) {
1555
if (i < (uint32_t)p_material_overrides.size()) {
1556
materials.write[i] = p_material_overrides[i];
1557
}
1558
}
1559
1560
gi_inst->set_surface_materials(materials);
1561
1562
if (cull_argument.size() == 0) {
1563
cull_argument.push_back(nullptr);
1564
}
1565
cull_argument[0] = gi_inst;
1566
_render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
1567
1568
geometry_instance_free(gi_inst);
1569
1570
TypedArray<Image> ret;
1571
1572
{
1573
PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
1574
Ref<Image> img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
1575
RD::get_singleton()->free(albedo_alpha_tex);
1576
ret.push_back(img);
1577
}
1578
1579
{
1580
PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
1581
Ref<Image> img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
1582
RD::get_singleton()->free(normal_tex);
1583
ret.push_back(img);
1584
}
1585
1586
{
1587
PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
1588
Ref<Image> img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
1589
RD::get_singleton()->free(orm_tex);
1590
ret.push_back(img);
1591
}
1592
1593
{
1594
PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
1595
Ref<Image> img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
1596
RD::get_singleton()->free(emission_tex);
1597
ret.push_back(img);
1598
}
1599
1600
RD::get_singleton()->free(depth_write_tex);
1601
RD::get_singleton()->free(depth_tex);
1602
1603
return ret;
1604
}
1605
1606
void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
1607
gi.sdfgi_debug_probe_pos = p_position;
1608
gi.sdfgi_debug_probe_dir = p_dir;
1609
}
1610
1611
RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
1612
1613
bool RendererSceneRenderRD::is_vrs_supported() const {
1614
return RD::get_singleton()->has_feature(RD::SUPPORTS_ATTACHMENT_VRS);
1615
}
1616
1617
bool RendererSceneRenderRD::is_dynamic_gi_supported() const {
1618
// usable by default (unless low end = true)
1619
return true;
1620
}
1621
1622
bool RendererSceneRenderRD::is_volumetric_supported() const {
1623
// usable by default (unless low end = true)
1624
return true;
1625
}
1626
1627
uint32_t RendererSceneRenderRD::get_max_elements() const {
1628
return GLOBAL_GET_CACHED(uint32_t, "rendering/limits/cluster_builder/max_clustered_elements");
1629
}
1630
1631
RendererSceneRenderRD::RendererSceneRenderRD() {
1632
singleton = this;
1633
}
1634
1635
void RendererSceneRenderRD::init() {
1636
max_cluster_elements = get_max_elements();
1637
RendererRD::LightStorage::get_singleton()->set_max_cluster_elements(max_cluster_elements);
1638
1639
/* Forward ID */
1640
forward_id_storage = create_forward_id_storage();
1641
1642
/* Register the include files we make available by default to our users */
1643
{
1644
ShaderIncludeDB::register_built_in_include_file("godot/decal_data_inc.glsl", decal_data_inc_shader_glsl);
1645
ShaderIncludeDB::register_built_in_include_file("godot/light_data_inc.glsl", light_data_inc_shader_glsl);
1646
ShaderIncludeDB::register_built_in_include_file("godot/scene_data_inc.glsl", scene_data_inc_shader_glsl);
1647
}
1648
1649
/* SKY SHADER */
1650
1651
sky.init();
1652
1653
/* GI */
1654
1655
if (is_dynamic_gi_supported()) {
1656
gi.init(&sky);
1657
}
1658
1659
{ //decals
1660
RendererRD::TextureStorage::get_singleton()->set_max_decals(max_cluster_elements);
1661
}
1662
1663
{ //lights
1664
}
1665
1666
if (is_volumetric_supported()) {
1667
RendererRD::Fog::get_singleton()->init_fog_shader(RendererRD::LightStorage::get_singleton()->get_max_directional_lights(), get_roughness_layers(), is_using_radiance_cubemap_array());
1668
}
1669
1670
RSG::camera_attributes->camera_attributes_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape"))));
1671
RSG::camera_attributes->camera_attributes_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter"));
1672
use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");
1673
1674
screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled");
1675
screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount");
1676
screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit");
1677
glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0;
1678
1679
directional_penumbra_shadow_kernel = memnew_arr(float, 128);
1680
directional_soft_shadow_kernel = memnew_arr(float, 128);
1681
penumbra_shadow_kernel = memnew_arr(float, 128);
1682
soft_shadow_kernel = memnew_arr(float, 128);
1683
positional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality"))));
1684
directional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality"))));
1685
1686
environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth"));
1687
environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter"));
1688
1689
decals_set_filter(RS::DecalFilter(int(GLOBAL_GET("rendering/textures/decals/filter"))));
1690
light_projectors_set_filter(RS::LightProjectorFilter(int(GLOBAL_GET("rendering/textures/light_projectors/filter"))));
1691
lightmaps_set_bicubic_filter(GLOBAL_GET("rendering/lightmapping/lightmap_gi/use_bicubic_filter"));
1692
1693
cull_argument.set_page_pool(&cull_argument_pool);
1694
1695
bool can_use_storage = _render_buffers_can_be_storage();
1696
bool can_use_vrs = is_vrs_supported();
1697
bokeh_dof = memnew(RendererRD::BokehDOF(!can_use_storage));
1698
copy_effects = memnew(RendererRD::CopyEffects(!can_use_storage));
1699
debug_effects = memnew(RendererRD::DebugEffects);
1700
luminance = memnew(RendererRD::Luminance(!can_use_storage));
1701
smaa = memnew(RendererRD::SMAA);
1702
tone_mapper = memnew(RendererRD::ToneMapper);
1703
if (can_use_vrs) {
1704
vrs = memnew(RendererRD::VRS);
1705
}
1706
if (can_use_storage) {
1707
fsr = memnew(RendererRD::FSR);
1708
}
1709
#ifdef METAL_ENABLED
1710
mfx_spatial = memnew(RendererRD::MFXSpatialEffect);
1711
#endif
1712
}
1713
1714
RendererSceneRenderRD::~RendererSceneRenderRD() {
1715
if (forward_id_storage) {
1716
memdelete(forward_id_storage);
1717
}
1718
1719
if (bokeh_dof) {
1720
memdelete(bokeh_dof);
1721
}
1722
if (copy_effects) {
1723
memdelete(copy_effects);
1724
}
1725
if (debug_effects) {
1726
memdelete(debug_effects);
1727
}
1728
if (luminance) {
1729
memdelete(luminance);
1730
}
1731
if (smaa) {
1732
memdelete(smaa);
1733
}
1734
if (tone_mapper) {
1735
memdelete(tone_mapper);
1736
}
1737
if (vrs) {
1738
memdelete(vrs);
1739
}
1740
if (fsr) {
1741
memdelete(fsr);
1742
}
1743
#ifdef METAL_ENABLED
1744
if (mfx_spatial) {
1745
memdelete(mfx_spatial);
1746
}
1747
#endif
1748
1749
if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) {
1750
RD::get_singleton()->free(sky.sky_scene_state.uniform_set);
1751
}
1752
1753
if (is_dynamic_gi_supported()) {
1754
gi.free();
1755
}
1756
1757
if (is_volumetric_supported()) {
1758
RendererRD::Fog::get_singleton()->free_fog_shader();
1759
}
1760
1761
memdelete_arr(directional_penumbra_shadow_kernel);
1762
memdelete_arr(directional_soft_shadow_kernel);
1763
memdelete_arr(penumbra_shadow_kernel);
1764
memdelete_arr(soft_shadow_kernel);
1765
1766
RSG::light_storage->directional_shadow_atlas_set_size(0);
1767
cull_argument.reset(); //avoid exit error
1768
}
1769
1770