Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/tests/core/math/test_vector2.h
10278 views
1
/**************************************************************************/
2
/* test_vector2.h */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#pragma once
32
33
#include "core/math/vector2.h"
34
#include "core/math/vector2i.h"
35
#include "tests/test_macros.h"
36
37
namespace TestVector2 {
38
39
TEST_CASE("[Vector2] Constructor methods") {
40
constexpr Vector2 vector_empty = Vector2();
41
constexpr Vector2 vector_zero = Vector2(0.0, 0.0);
42
static_assert(
43
vector_empty == vector_zero,
44
"Vector2 Constructor with no inputs should return a zero Vector2.");
45
}
46
47
TEST_CASE("[Vector2] Angle methods") {
48
constexpr Vector2 vector_x = Vector2(1, 0);
49
constexpr Vector2 vector_y = Vector2(0, 1);
50
CHECK_MESSAGE(
51
vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math::TAU / 4),
52
"Vector2 angle_to should work as expected.");
53
CHECK_MESSAGE(
54
vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math::TAU / 4),
55
"Vector2 angle_to should work as expected.");
56
CHECK_MESSAGE(
57
vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math::TAU * 3 / 8),
58
"Vector2 angle_to_point should work as expected.");
59
CHECK_MESSAGE(
60
vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math::TAU / 8),
61
"Vector2 angle_to_point should work as expected.");
62
}
63
64
TEST_CASE("[Vector2] Axis methods") {
65
Vector2 vector = Vector2(1.2, 3.4);
66
CHECK_MESSAGE(
67
vector.max_axis_index() == Vector2::Axis::AXIS_Y,
68
"Vector2 max_axis_index should work as expected.");
69
CHECK_MESSAGE(
70
vector.min_axis_index() == Vector2::Axis::AXIS_X,
71
"Vector2 min_axis_index should work as expected.");
72
CHECK_MESSAGE(
73
vector[vector.min_axis_index()] == (real_t)1.2,
74
"Vector2 array operator should work as expected.");
75
vector[Vector2::Axis::AXIS_Y] = 3.7;
76
CHECK_MESSAGE(
77
vector[Vector2::Axis::AXIS_Y] == (real_t)3.7,
78
"Vector2 array operator setter should work as expected.");
79
}
80
81
TEST_CASE("[Vector2] Interpolation methods") {
82
constexpr Vector2 vector1 = Vector2(1, 2);
83
constexpr Vector2 vector2 = Vector2(4, 5);
84
CHECK_MESSAGE(
85
vector1.lerp(vector2, 0.5) == Vector2(2.5, 3.5),
86
"Vector2 lerp should work as expected.");
87
CHECK_MESSAGE(
88
vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector2(2, 3)),
89
"Vector2 lerp should work as expected.");
90
CHECK_MESSAGE(
91
vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector2(0.538953602313995361, 0.84233558177947998)),
92
"Vector2 slerp should work as expected.");
93
CHECK_MESSAGE(
94
vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector2(0.508990883827209473, 0.860771894454956055)),
95
"Vector2 slerp should work as expected.");
96
CHECK_MESSAGE(
97
Vector2(5, 0).slerp(Vector2(0, 5), 0.5).is_equal_approx(Vector2(5, 5) * Math::SQRT12),
98
"Vector2 slerp with non-normalized values should work as expected.");
99
CHECK_MESSAGE(
100
Vector2(1, 1).slerp(Vector2(2, 2), 0.5).is_equal_approx(Vector2(1.5, 1.5)),
101
"Vector2 slerp with colinear inputs should behave as expected.");
102
CHECK_MESSAGE(
103
Vector2().slerp(Vector2(), 0.5) == Vector2(),
104
"Vector2 slerp with both inputs as zero vectors should return a zero vector.");
105
CHECK_MESSAGE(
106
Vector2().slerp(Vector2(1, 1), 0.5) == Vector2(0.5, 0.5),
107
"Vector2 slerp with one input as zero should behave like a regular lerp.");
108
CHECK_MESSAGE(
109
Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5),
110
"Vector2 slerp with one input as zero should behave like a regular lerp.");
111
CHECK_MESSAGE(
112
Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)),
113
"Vector2 slerp should work as expected.");
114
CHECK_MESSAGE(
115
vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919),
116
"Vector2 slerp with different length input should return a vector with an interpolated length.");
117
CHECK_MESSAGE(
118
vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
119
"Vector2 slerp with different length input should return a vector with an interpolated angle.");
120
CHECK_MESSAGE(
121
vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5),
122
"Vector2 cubic_interpolate should work as expected.");
123
CHECK_MESSAGE(
124
vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 1.0 / 3.0).is_equal_approx(Vector2(1.851851940155029297, 2.962963104248046875)),
125
"Vector2 cubic_interpolate should work as expected.");
126
CHECK_MESSAGE(
127
Vector2(1, 0).move_toward(Vector2(10, 0), 3) == Vector2(4, 0),
128
"Vector2 move_toward should work as expected.");
129
}
130
131
TEST_CASE("[Vector2] Length methods") {
132
constexpr Vector2 vector1 = Vector2(10, 10);
133
constexpr Vector2 vector2 = Vector2(20, 30);
134
CHECK_MESSAGE(
135
vector1.length_squared() == 200,
136
"Vector2 length_squared should work as expected and return exact result.");
137
CHECK_MESSAGE(
138
vector1.length() == doctest::Approx(10 * (real_t)Math::SQRT2),
139
"Vector2 length should work as expected.");
140
CHECK_MESSAGE(
141
vector2.length_squared() == 1300,
142
"Vector2 length_squared should work as expected and return exact result.");
143
CHECK_MESSAGE(
144
vector2.length() == doctest::Approx((real_t)36.05551275463989293119),
145
"Vector2 length should work as expected.");
146
CHECK_MESSAGE(
147
vector1.distance_squared_to(vector2) == 500,
148
"Vector2 distance_squared_to should work as expected and return exact result.");
149
CHECK_MESSAGE(
150
vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409),
151
"Vector2 distance_to should work as expected.");
152
}
153
154
TEST_CASE("[Vector2] Limiting methods") {
155
constexpr Vector2 vector = Vector2(10, 10);
156
CHECK_MESSAGE(
157
vector.limit_length().is_equal_approx(Vector2(Math::SQRT12, Math::SQRT12)),
158
"Vector2 limit_length should work as expected.");
159
CHECK_MESSAGE(
160
vector.limit_length(5).is_equal_approx(5 * Vector2(Math::SQRT12, Math::SQRT12)),
161
"Vector2 limit_length should work as expected.");
162
163
CHECK_MESSAGE(
164
Vector2(-5, 15).clamp(Vector2(), vector).is_equal_approx(Vector2(0, 10)),
165
"Vector2 clamp should work as expected.");
166
CHECK_MESSAGE(
167
vector.clamp(Vector2(0, 15), Vector2(5, 20)).is_equal_approx(Vector2(5, 15)),
168
"Vector2 clamp should work as expected.");
169
}
170
171
TEST_CASE("[Vector2] Normalization methods") {
172
CHECK_MESSAGE(
173
Vector2(1, 0).is_normalized() == true,
174
"Vector2 is_normalized should return true for a normalized vector.");
175
CHECK_MESSAGE(
176
Vector2(1, 1).is_normalized() == false,
177
"Vector2 is_normalized should return false for a non-normalized vector.");
178
CHECK_MESSAGE(
179
Vector2(1, 0).normalized() == Vector2(1, 0),
180
"Vector2 normalized should return the same vector for a normalized vector.");
181
CHECK_MESSAGE(
182
Vector2(1, 1).normalized().is_equal_approx(Vector2(Math::SQRT12, Math::SQRT12)),
183
"Vector2 normalized should work as expected.");
184
185
Vector2 vector = Vector2(3.2, -5.4);
186
vector.normalize();
187
CHECK_MESSAGE(
188
vector == Vector2(3.2, -5.4).normalized(),
189
"Vector2 normalize should convert same way as Vector2 normalized.");
190
CHECK_MESSAGE(
191
vector.is_equal_approx(Vector2(0.509802390301732898898, -0.860291533634174266891)),
192
"Vector2 normalize should work as expected.");
193
}
194
195
TEST_CASE("[Vector2] Operators") {
196
constexpr Vector2 decimal1 = Vector2(2.3, 4.9);
197
constexpr Vector2 decimal2 = Vector2(1.2, 3.4);
198
constexpr Vector2 power1 = Vector2(0.75, 1.5);
199
constexpr Vector2 power2 = Vector2(0.5, 0.125);
200
constexpr Vector2 int1 = Vector2(4, 5);
201
constexpr Vector2 int2 = Vector2(1, 2);
202
203
CHECK_MESSAGE(
204
(decimal1 + decimal2).is_equal_approx(Vector2(3.5, 8.3)),
205
"Vector2 addition should behave as expected.");
206
static_assert(
207
(power1 + power2) == Vector2(1.25, 1.625),
208
"Vector2 addition with powers of two should give exact results.");
209
static_assert(
210
(int1 + int2) == Vector2(5, 7),
211
"Vector2 addition with integers should give exact results.");
212
213
CHECK_MESSAGE(
214
(decimal1 - decimal2).is_equal_approx(Vector2(1.1, 1.5)),
215
"Vector2 subtraction should behave as expected.");
216
static_assert(
217
(power1 - power2) == Vector2(0.25, 1.375),
218
"Vector2 subtraction with powers of two should give exact results.");
219
static_assert(
220
(int1 - int2) == Vector2(3, 3),
221
"Vector2 subtraction with integers should give exact results.");
222
223
CHECK_MESSAGE(
224
(decimal1 * decimal2).is_equal_approx(Vector2(2.76, 16.66)),
225
"Vector2 multiplication should behave as expected.");
226
static_assert(
227
(power1 * power2) == Vector2(0.375, 0.1875),
228
"Vector2 multiplication with powers of two should give exact results.");
229
static_assert(
230
(int1 * int2) == Vector2(4, 10),
231
"Vector2 multiplication with integers should give exact results.");
232
233
CHECK_MESSAGE(
234
(decimal1 / decimal2).is_equal_approx(Vector2(1.91666666666666666, 1.44117647058823529)),
235
"Vector2 division should behave as expected.");
236
static_assert(
237
(power1 / power2) == Vector2(1.5, 12.0),
238
"Vector2 division with powers of two should give exact results.");
239
static_assert(
240
(int1 / int2) == Vector2(4, 2.5),
241
"Vector2 division with integers should give exact results.");
242
243
CHECK_MESSAGE(
244
(decimal1 * 2).is_equal_approx(Vector2(4.6, 9.8)),
245
"Vector2 multiplication should behave as expected.");
246
static_assert(
247
(power1 * 2) == Vector2(1.5, 3),
248
"Vector2 multiplication with powers of two should give exact results.");
249
static_assert(
250
(int1 * 2) == Vector2(8, 10),
251
"Vector2 multiplication with integers should give exact results.");
252
253
CHECK_MESSAGE(
254
(decimal1 / 2).is_equal_approx(Vector2(1.15, 2.45)),
255
"Vector2 division should behave as expected.");
256
static_assert(
257
(power1 / 2) == Vector2(0.375, 0.75),
258
"Vector2 division with powers of two should give exact results.");
259
static_assert(
260
(int1 / 2) == Vector2(2, 2.5),
261
"Vector2 division with integers should give exact results.");
262
263
CHECK_MESSAGE(
264
((Vector2i)decimal1) == Vector2i(2, 4),
265
"Vector2 cast to Vector2i should work as expected.");
266
CHECK_MESSAGE(
267
((Vector2i)decimal2) == Vector2i(1, 3),
268
"Vector2 cast to Vector2i should work as expected.");
269
CHECK_MESSAGE(
270
Vector2(Vector2i(1, 2)) == Vector2(1, 2),
271
"Vector2 constructed from Vector2i should work as expected.");
272
273
CHECK_MESSAGE(
274
((String)decimal1) == "(2.3, 4.9)",
275
"Vector2 cast to String should work as expected.");
276
CHECK_MESSAGE(
277
((String)decimal2) == "(1.2, 3.4)",
278
"Vector2 cast to String should work as expected.");
279
CHECK_MESSAGE(
280
((String)Vector2(9.8, 9.9)) == "(9.8, 9.9)",
281
"Vector2 cast to String should work as expected.");
282
#ifdef REAL_T_IS_DOUBLE
283
CHECK_MESSAGE(
284
((String)Vector2(Math::PI, Math::TAU)) == "(3.14159265358979, 6.28318530717959)",
285
"Vector2 cast to String should print the correct amount of digits for real_t = double.");
286
#else
287
CHECK_MESSAGE(
288
((String)Vector2(Math::PI, Math::TAU)) == "(3.141593, 6.283185)",
289
"Vector2 cast to String should print the correct amount of digits for real_t = float.");
290
#endif // REAL_T_IS_DOUBLE
291
}
292
293
TEST_CASE("[Vector2] Other methods") {
294
constexpr Vector2 vector = Vector2(1.2, 3.4);
295
CHECK_MESSAGE(
296
vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4),
297
"Vector2 aspect should work as expected.");
298
299
CHECK_MESSAGE(
300
vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()),
301
"Vector2 direction_to should work as expected.");
302
CHECK_MESSAGE(
303
Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math::SQRT12, Math::SQRT12)),
304
"Vector2 direction_to should work as expected.");
305
306
CHECK_MESSAGE(
307
vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)),
308
"Vector2 posmod should work as expected.");
309
CHECK_MESSAGE(
310
(-vector).posmod(2).is_equal_approx(Vector2(0.8, 0.6)),
311
"Vector2 posmod should work as expected.");
312
CHECK_MESSAGE(
313
vector.posmodv(Vector2(1, 2)).is_equal_approx(Vector2(0.2, 1.4)),
314
"Vector2 posmodv should work as expected.");
315
CHECK_MESSAGE(
316
(-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)),
317
"Vector2 posmodv should work as expected.");
318
319
CHECK_MESSAGE(
320
vector.rotated(Math::TAU).is_equal_approx(Vector2(1.2, 3.4)),
321
"Vector2 rotated should work as expected.");
322
CHECK_MESSAGE(
323
vector.rotated(Math::TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)),
324
"Vector2 rotated should work as expected.");
325
CHECK_MESSAGE(
326
vector.rotated(Math::TAU / 3).is_equal_approx(Vector2(-3.544486372867091398996, -0.660769515458673623883)),
327
"Vector2 rotated should work as expected.");
328
CHECK_MESSAGE(
329
vector.rotated(Math::TAU / 2).is_equal_approx(vector.rotated(Math::TAU / -2)),
330
"Vector2 rotated should work as expected.");
331
332
CHECK_MESSAGE(
333
vector.snapped(Vector2(1, 1)) == Vector2(1, 3),
334
"Vector2 snapped to integers should be the same as rounding.");
335
CHECK_MESSAGE(
336
Vector2(3.4, 5.6).snapped(Vector2(1, 1)) == Vector2(3, 6),
337
"Vector2 snapped to integers should be the same as rounding.");
338
CHECK_MESSAGE(
339
vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5),
340
"Vector2 snapped to 0.25 should give exact results.");
341
342
CHECK_MESSAGE(
343
Vector2(1.2, 2.5).is_equal_approx(vector.min(Vector2(3.0, 2.5))),
344
"Vector2 min should return expected value.");
345
346
CHECK_MESSAGE(
347
Vector2(5.3, 3.4).is_equal_approx(vector.max(Vector2(5.3, 2.0))),
348
"Vector2 max should return expected value.");
349
}
350
351
TEST_CASE("[Vector2] Plane methods") {
352
constexpr Vector2 vector = Vector2(1.2, 3.4);
353
constexpr Vector2 vector_y = Vector2(0, 1);
354
constexpr Vector2 vector_normal = Vector2(0.95879811270838721622267, 0.2840883296913739899919);
355
constexpr real_t p_d = 99.1;
356
CHECK_MESSAGE(
357
vector.bounce(vector_y) == Vector2(1.2, -3.4),
358
"Vector2 bounce on a plane with normal of the Y axis should.");
359
CHECK_MESSAGE(
360
vector.bounce(vector_normal).is_equal_approx(Vector2(-2.85851197982345523329, 2.197477931904161412358)),
361
"Vector2 bounce with normal should return expected value.");
362
CHECK_MESSAGE(
363
vector.reflect(vector_y) == Vector2(-1.2, 3.4),
364
"Vector2 reflect on a plane with normal of the Y axis should.");
365
CHECK_MESSAGE(
366
vector.reflect(vector_normal).is_equal_approx(Vector2(2.85851197982345523329, -2.197477931904161412358)),
367
"Vector2 reflect with normal should return expected value.");
368
CHECK_MESSAGE(
369
vector.project(vector_y) == Vector2(0, 3.4),
370
"Vector2 projected on the Y axis should only give the Y component.");
371
CHECK_MESSAGE(
372
vector.project(vector_normal).is_equal_approx(Vector2(2.0292559899117276166, 0.60126103404791929382)),
373
"Vector2 projected on a normal should return expected value.");
374
CHECK_MESSAGE(
375
vector_normal.plane_project(p_d, vector).is_equal_approx(Vector2(94.187635516479631, 30.951892004882851)),
376
"Vector2 plane_project should return expected value.");
377
CHECK_MESSAGE(
378
vector.slide(vector_y) == Vector2(1.2, 0),
379
"Vector2 slide on a plane with normal of the Y axis should set the Y to zero.");
380
CHECK_MESSAGE(
381
vector.slide(vector_normal).is_equal_approx(Vector2(-0.8292559899117276166456, 2.798738965952080706179)),
382
"Vector2 slide with normal should return expected value.");
383
// There's probably a better way to test these ones?
384
#ifdef MATH_CHECKS
385
constexpr Vector2 vector_non_normal = Vector2(5.4, 1.6);
386
ERR_PRINT_OFF;
387
CHECK_MESSAGE(
388
vector.bounce(vector_non_normal).is_equal_approx(Vector2()),
389
"Vector2 bounce should return empty Vector2 with non-normalized input.");
390
CHECK_MESSAGE(
391
vector.reflect(vector_non_normal).is_equal_approx(Vector2()),
392
"Vector2 reflect should return empty Vector2 with non-normalized input.");
393
CHECK_MESSAGE(
394
vector.slide(vector_non_normal).is_equal_approx(Vector2()),
395
"Vector2 slide should return empty Vector2 with non-normalized input.");
396
ERR_PRINT_ON;
397
#endif // MATH_CHECKS
398
}
399
400
TEST_CASE("[Vector2] Rounding methods") {
401
constexpr Vector2 vector1 = Vector2(1.2, 5.6);
402
constexpr Vector2 vector2 = Vector2(1.2, -5.6);
403
CHECK_MESSAGE(
404
vector1.abs() == vector1,
405
"Vector2 abs should work as expected.");
406
CHECK_MESSAGE(
407
vector2.abs() == vector1,
408
"Vector2 abs should work as expected.");
409
410
CHECK_MESSAGE(
411
vector1.ceil() == Vector2(2, 6),
412
"Vector2 ceil should work as expected.");
413
CHECK_MESSAGE(
414
vector2.ceil() == Vector2(2, -5),
415
"Vector2 ceil should work as expected.");
416
417
CHECK_MESSAGE(
418
vector1.floor() == Vector2(1, 5),
419
"Vector2 floor should work as expected.");
420
CHECK_MESSAGE(
421
vector2.floor() == Vector2(1, -6),
422
"Vector2 floor should work as expected.");
423
424
CHECK_MESSAGE(
425
vector1.round() == Vector2(1, 6),
426
"Vector2 round should work as expected.");
427
CHECK_MESSAGE(
428
vector2.round() == Vector2(1, -6),
429
"Vector2 round should work as expected.");
430
431
CHECK_MESSAGE(
432
vector1.sign() == Vector2(1, 1),
433
"Vector2 sign should work as expected.");
434
CHECK_MESSAGE(
435
vector2.sign() == Vector2(1, -1),
436
"Vector2 sign should work as expected.");
437
}
438
439
TEST_CASE("[Vector2] Linear algebra methods") {
440
constexpr Vector2 vector_x = Vector2(1, 0);
441
constexpr Vector2 vector_y = Vector2(0, 1);
442
constexpr Vector2 a = Vector2(3.5, 8.5);
443
constexpr Vector2 b = Vector2(5.2, 4.6);
444
CHECK_MESSAGE(
445
vector_x.cross(vector_y) == 1,
446
"Vector2 cross product of X and Y should give 1.");
447
CHECK_MESSAGE(
448
vector_y.cross(vector_x) == -1,
449
"Vector2 cross product of Y and X should give negative 1.");
450
CHECK_MESSAGE(
451
a.cross(b) == doctest::Approx((real_t)-28.1),
452
"Vector2 cross should return expected value.");
453
CHECK_MESSAGE(
454
Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1),
455
"Vector2 cross should return expected value.");
456
457
CHECK_MESSAGE(
458
vector_x.dot(vector_y) == 0.0,
459
"Vector2 dot product of perpendicular vectors should be zero.");
460
CHECK_MESSAGE(
461
vector_x.dot(vector_x) == 1.0,
462
"Vector2 dot product of identical unit vectors should be one.");
463
CHECK_MESSAGE(
464
(vector_x * 10).dot(vector_x * 10) == 100.0,
465
"Vector2 dot product of same direction vectors should behave as expected.");
466
CHECK_MESSAGE(
467
a.dot(b) == doctest::Approx((real_t)57.3),
468
"Vector2 dot should return expected value.");
469
CHECK_MESSAGE(
470
Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3),
471
"Vector2 dot should return expected value.");
472
}
473
474
TEST_CASE("[Vector2] Finite number checks") {
475
constexpr double infinite[] = { Math::NaN, Math::INF, -Math::INF };
476
477
CHECK_MESSAGE(
478
Vector2(0, 1).is_finite(),
479
"Vector2(0, 1) should be finite");
480
481
for (double x : infinite) {
482
CHECK_FALSE_MESSAGE(
483
Vector2(x, 1).is_finite(),
484
"Vector2 with one component infinite should not be finite.");
485
CHECK_FALSE_MESSAGE(
486
Vector2(0, x).is_finite(),
487
"Vector2 with one component infinite should not be finite.");
488
}
489
490
for (double x : infinite) {
491
for (double y : infinite) {
492
CHECK_FALSE_MESSAGE(
493
Vector2(x, y).is_finite(),
494
"Vector2 with two components infinite should not be finite.");
495
}
496
}
497
}
498
499
} // namespace TestVector2
500
501