Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/tests/core/math/test_vector4.h
10278 views
1
/**************************************************************************/
2
/* test_vector4.h */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#pragma once
32
33
#include "core/math/vector4.h"
34
#include "tests/test_macros.h"
35
36
namespace TestVector4 {
37
38
TEST_CASE("[Vector4] Constructor methods") {
39
constexpr Vector4 vector_empty = Vector4();
40
constexpr Vector4 vector_zero = Vector4(0.0, 0.0, 0.0, 0.0);
41
static_assert(
42
vector_empty == vector_zero,
43
"Vector4 Constructor with no inputs should return a zero Vector4.");
44
}
45
46
TEST_CASE("[Vector4] Axis methods") {
47
Vector4 vector = Vector4(1.2, 3.4, 5.6, -0.9);
48
CHECK_MESSAGE(
49
vector.max_axis_index() == Vector4::Axis::AXIS_Z,
50
"Vector4 max_axis_index should work as expected.");
51
CHECK_MESSAGE(
52
vector.min_axis_index() == Vector4::Axis::AXIS_W,
53
"Vector4 min_axis_index should work as expected.");
54
CHECK_MESSAGE(
55
vector[vector.max_axis_index()] == (real_t)5.6,
56
"Vector4 array operator should work as expected.");
57
CHECK_MESSAGE(
58
vector[vector.min_axis_index()] == (real_t)-0.9,
59
"Vector4 array operator should work as expected.");
60
61
vector[Vector4::Axis::AXIS_Y] = 3.7;
62
CHECK_MESSAGE(
63
vector[Vector4::Axis::AXIS_Y] == (real_t)3.7,
64
"Vector4 array operator setter should work as expected.");
65
}
66
67
TEST_CASE("[Vector4] Interpolation methods") {
68
constexpr Vector4 vector1 = Vector4(1, 2, 3, 4);
69
constexpr Vector4 vector2 = Vector4(4, 5, 6, 7);
70
CHECK_MESSAGE(
71
vector1.lerp(vector2, 0.5) == Vector4(2.5, 3.5, 4.5, 5.5),
72
"Vector4 lerp should work as expected.");
73
CHECK_MESSAGE(
74
vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector4(2, 3, 4, 5)),
75
"Vector4 lerp should work as expected.");
76
CHECK_MESSAGE(
77
vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 0.5) == Vector4(2.375, 3.5, 4.625, 5.75),
78
"Vector4 cubic_interpolate should work as expected.");
79
CHECK_MESSAGE(
80
vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector4(1.851851940155029297, 2.962963104248046875, 4.074074268341064453, 5.185185185185)),
81
"Vector4 cubic_interpolate should work as expected.");
82
}
83
84
TEST_CASE("[Vector4] Length methods") {
85
constexpr Vector4 vector1 = Vector4(10, 10, 10, 10);
86
constexpr Vector4 vector2 = Vector4(20, 30, 40, 50);
87
CHECK_MESSAGE(
88
vector1.length_squared() == 400,
89
"Vector4 length_squared should work as expected and return exact result.");
90
CHECK_MESSAGE(
91
vector1.length() == doctest::Approx(20),
92
"Vector4 length should work as expected.");
93
CHECK_MESSAGE(
94
vector2.length_squared() == 5400,
95
"Vector4 length_squared should work as expected and return exact result.");
96
CHECK_MESSAGE(
97
vector2.length() == doctest::Approx((real_t)73.484692283495),
98
"Vector4 length should work as expected.");
99
CHECK_MESSAGE(
100
vector1.distance_to(vector2) == doctest::Approx((real_t)54.772255750517),
101
"Vector4 distance_to should work as expected.");
102
CHECK_MESSAGE(
103
vector1.distance_squared_to(vector2) == doctest::Approx(3000),
104
"Vector4 distance_squared_to should work as expected.");
105
}
106
107
TEST_CASE("[Vector4] Limiting methods") {
108
constexpr Vector4 vector = Vector4(10, 10, 10, 10);
109
CHECK_MESSAGE(
110
Vector4(-5, 5, 15, -15).clamp(Vector4(), vector) == Vector4(0, 5, 10, 0),
111
"Vector4 clamp should work as expected.");
112
CHECK_MESSAGE(
113
vector.clamp(Vector4(0, 10, 15, 18), Vector4(5, 10, 20, 25)) == Vector4(5, 10, 15, 18),
114
"Vector4 clamp should work as expected.");
115
}
116
117
TEST_CASE("[Vector4] Normalization methods") {
118
CHECK_MESSAGE(
119
Vector4(1, 0, 0, 0).is_normalized() == true,
120
"Vector4 is_normalized should return true for a normalized vector.");
121
CHECK_MESSAGE(
122
Vector4(1, 1, 1, 1).is_normalized() == false,
123
"Vector4 is_normalized should return false for a non-normalized vector.");
124
CHECK_MESSAGE(
125
Vector4(1, 0, 0, 0).normalized() == Vector4(1, 0, 0, 0),
126
"Vector4 normalized should return the same vector for a normalized vector.");
127
CHECK_MESSAGE(
128
Vector4(1, 1, 0, 0).normalized().is_equal_approx(Vector4(Math::SQRT12, Math::SQRT12, 0, 0)),
129
"Vector4 normalized should work as expected.");
130
CHECK_MESSAGE(
131
Vector4(1, 1, 1, 1).normalized().is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)),
132
"Vector4 normalized should work as expected.");
133
}
134
135
TEST_CASE("[Vector4] Operators") {
136
constexpr Vector4 decimal1 = Vector4(2.3, 4.9, 7.8, 3.2);
137
constexpr Vector4 decimal2 = Vector4(1.2, 3.4, 5.6, 1.7);
138
constexpr Vector4 power1 = Vector4(0.75, 1.5, 0.625, 0.125);
139
constexpr Vector4 power2 = Vector4(0.5, 0.125, 0.25, 0.75);
140
constexpr Vector4 int1 = Vector4(4, 5, 9, 2);
141
constexpr Vector4 int2 = Vector4(1, 2, 3, 1);
142
143
static_assert(
144
-decimal1 == Vector4(-2.3, -4.9, -7.8, -3.2),
145
"Vector4 change of sign should work as expected.");
146
CHECK_MESSAGE(
147
(decimal1 + decimal2).is_equal_approx(Vector4(3.5, 8.3, 13.4, 4.9)),
148
"Vector4 addition should behave as expected.");
149
static_assert(
150
(power1 + power2) == Vector4(1.25, 1.625, 0.875, 0.875),
151
"Vector4 addition with powers of two should give exact results.");
152
static_assert(
153
(int1 + int2) == Vector4(5, 7, 12, 3),
154
"Vector4 addition with integers should give exact results.");
155
156
CHECK_MESSAGE(
157
(decimal1 - decimal2).is_equal_approx(Vector4(1.1, 1.5, 2.2, 1.5)),
158
"Vector4 subtraction should behave as expected.");
159
static_assert(
160
(power1 - power2) == Vector4(0.25, 1.375, 0.375, -0.625),
161
"Vector4 subtraction with powers of two should give exact results.");
162
static_assert(
163
(int1 - int2) == Vector4(3, 3, 6, 1),
164
"Vector4 subtraction with integers should give exact results.");
165
166
CHECK_MESSAGE(
167
(decimal1 * decimal2).is_equal_approx(Vector4(2.76, 16.66, 43.68, 5.44)),
168
"Vector4 multiplication should behave as expected.");
169
static_assert(
170
(power1 * power2) == Vector4(0.375, 0.1875, 0.15625, 0.09375),
171
"Vector4 multiplication with powers of two should give exact results.");
172
static_assert(
173
(int1 * int2) == Vector4(4, 10, 27, 2),
174
"Vector4 multiplication with integers should give exact results.");
175
176
CHECK_MESSAGE(
177
(decimal1 / decimal2).is_equal_approx(Vector4(1.91666666666666666, 1.44117647058823529, 1.39285714285714286, 1.88235294118)),
178
"Vector4 division should behave as expected.");
179
static_assert(
180
(power1 / power2) == Vector4(1.5, 12.0, 2.5, 1.0 / 6.0),
181
"Vector4 division with powers of two should give exact results.");
182
static_assert(
183
(int1 / int2) == Vector4(4, 2.5, 3, 2),
184
"Vector4 division with integers should give exact results.");
185
186
CHECK_MESSAGE(
187
(decimal1 * 2).is_equal_approx(Vector4(4.6, 9.8, 15.6, 6.4)),
188
"Vector4 multiplication should behave as expected.");
189
static_assert(
190
(power1 * 2) == Vector4(1.5, 3, 1.25, 0.25),
191
"Vector4 multiplication with powers of two should give exact results.");
192
static_assert(
193
(int1 * 2) == Vector4(8, 10, 18, 4),
194
"Vector4 multiplication with integers should give exact results.");
195
196
CHECK_MESSAGE(
197
(decimal1 / 2).is_equal_approx(Vector4(1.15, 2.45, 3.9, 1.6)),
198
"Vector4 division should behave as expected.");
199
static_assert(
200
(power1 / 2) == Vector4(0.375, 0.75, 0.3125, 0.0625),
201
"Vector4 division with powers of two should give exact results.");
202
static_assert(
203
(int1 / 2) == Vector4(2, 2.5, 4.5, 1),
204
"Vector4 division with integers should give exact results.");
205
206
CHECK_MESSAGE(
207
((String)decimal1) == "(2.3, 4.9, 7.8, 3.2)",
208
"Vector4 cast to String should work as expected.");
209
CHECK_MESSAGE(
210
((String)decimal2) == "(1.2, 3.4, 5.6, 1.7)",
211
"Vector4 cast to String should work as expected.");
212
CHECK_MESSAGE(
213
((String)Vector4(9.7, 9.8, 9.9, -1.8)) == "(9.7, 9.8, 9.9, -1.8)",
214
"Vector4 cast to String should work as expected.");
215
#ifdef REAL_T_IS_DOUBLE
216
CHECK_MESSAGE(
217
((String)Vector4(Math::E, Math::SQRT2, Math::SQRT3, Math::SQRT3)) == "(2.71828182845905, 1.4142135623731, 1.73205080756888, 1.73205080756888)",
218
"Vector4 cast to String should print the correct amount of digits for real_t = double.");
219
#else
220
CHECK_MESSAGE(
221
((String)Vector4(Math::E, Math::SQRT2, Math::SQRT3, Math::SQRT3)) == "(2.718282, 1.414214, 1.732051, 1.732051)",
222
"Vector4 cast to String should print the correct amount of digits for real_t = float.");
223
#endif // REAL_T_IS_DOUBLE
224
}
225
226
TEST_CASE("[Vector4] Other methods") {
227
constexpr Vector4 vector = Vector4(1.2, 3.4, 5.6, 1.6);
228
CHECK_MESSAGE(
229
vector.direction_to(Vector4()).is_equal_approx(-vector.normalized()),
230
"Vector4 direction_to should work as expected.");
231
CHECK_MESSAGE(
232
Vector4(1, 1, 1, 1).direction_to(Vector4(2, 2, 2, 2)).is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)),
233
"Vector4 direction_to should work as expected.");
234
CHECK_MESSAGE(
235
vector.inverse().is_equal_approx(Vector4(1 / 1.2, 1 / 3.4, 1 / 5.6, 1 / 1.6)),
236
"Vector4 inverse should work as expected.");
237
CHECK_MESSAGE(
238
vector.posmod(2).is_equal_approx(Vector4(1.2, 1.4, 1.6, 1.6)),
239
"Vector4 posmod should work as expected.");
240
CHECK_MESSAGE(
241
(-vector).posmod(2).is_equal_approx(Vector4(0.8, 0.6, 0.4, 0.4)),
242
"Vector4 posmod should work as expected.");
243
CHECK_MESSAGE(
244
vector.posmodv(Vector4(1, 2, 3, 4)).is_equal_approx(Vector4(0.2, 1.4, 2.6, 1.6)),
245
"Vector4 posmodv should work as expected.");
246
CHECK_MESSAGE(
247
(-vector).posmodv(Vector4(2, 3, 4, 5)).is_equal_approx(Vector4(0.8, 2.6, 2.4, 3.4)),
248
"Vector4 posmodv should work as expected.");
249
CHECK_MESSAGE(
250
vector.snapped(Vector4(1, 1, 1, 1)) == Vector4(1, 3, 6, 2),
251
"Vector4 snapped to integers should be the same as rounding.");
252
CHECK_MESSAGE(
253
vector.snapped(Vector4(0.25, 0.25, 0.25, 0.25)) == Vector4(1.25, 3.5, 5.5, 1.5),
254
"Vector4 snapped to 0.25 should give exact results.");
255
256
CHECK_MESSAGE(
257
Vector4(1.2, 2.5, 2.0, 1.6).is_equal_approx(vector.min(Vector4(3.0, 2.5, 2.0, 3.4))),
258
"Vector4 min should return expected value.");
259
260
CHECK_MESSAGE(
261
Vector4(5.3, 3.4, 5.6, 4.2).is_equal_approx(vector.max(Vector4(5.3, 2.0, 3.0, 4.2))),
262
"Vector4 max should return expected value.");
263
}
264
265
TEST_CASE("[Vector4] Rounding methods") {
266
constexpr Vector4 vector1 = Vector4(1.2, 3.4, 5.6, 1.6);
267
constexpr Vector4 vector2 = Vector4(1.2, -3.4, -5.6, -1.6);
268
CHECK_MESSAGE(
269
vector1.abs() == vector1,
270
"Vector4 abs should work as expected.");
271
CHECK_MESSAGE(
272
vector2.abs() == vector1,
273
"Vector4 abs should work as expected.");
274
CHECK_MESSAGE(
275
vector1.ceil() == Vector4(2, 4, 6, 2),
276
"Vector4 ceil should work as expected.");
277
CHECK_MESSAGE(
278
vector2.ceil() == Vector4(2, -3, -5, -1),
279
"Vector4 ceil should work as expected.");
280
281
CHECK_MESSAGE(
282
vector1.floor() == Vector4(1, 3, 5, 1),
283
"Vector4 floor should work as expected.");
284
CHECK_MESSAGE(
285
vector2.floor() == Vector4(1, -4, -6, -2),
286
"Vector4 floor should work as expected.");
287
288
CHECK_MESSAGE(
289
vector1.round() == Vector4(1, 3, 6, 2),
290
"Vector4 round should work as expected.");
291
CHECK_MESSAGE(
292
vector2.round() == Vector4(1, -3, -6, -2),
293
"Vector4 round should work as expected.");
294
295
CHECK_MESSAGE(
296
vector1.sign() == Vector4(1, 1, 1, 1),
297
"Vector4 sign should work as expected.");
298
CHECK_MESSAGE(
299
vector2.sign() == Vector4(1, -1, -1, -1),
300
"Vector4 sign should work as expected.");
301
}
302
303
TEST_CASE("[Vector4] Linear algebra methods") {
304
constexpr Vector4 vector_x = Vector4(1, 0, 0, 0);
305
constexpr Vector4 vector_y = Vector4(0, 1, 0, 0);
306
constexpr Vector4 vector1 = Vector4(1.7, 2.3, 1, 9.1);
307
constexpr Vector4 vector2 = Vector4(-8.2, -16, 3, 2.4);
308
309
CHECK_MESSAGE(
310
vector_x.dot(vector_y) == 0.0,
311
"Vector4 dot product of perpendicular vectors should be zero.");
312
CHECK_MESSAGE(
313
vector_x.dot(vector_x) == 1.0,
314
"Vector4 dot product of identical unit vectors should be one.");
315
CHECK_MESSAGE(
316
(vector_x * 10).dot(vector_x * 10) == 100.0,
317
"Vector4 dot product of same direction vectors should behave as expected.");
318
CHECK_MESSAGE(
319
(vector1 * 2).dot(vector2 * 4) == doctest::Approx((real_t)-25.9 * 8),
320
"Vector4 dot product should work as expected.");
321
}
322
323
TEST_CASE("[Vector4] Finite number checks") {
324
constexpr double infinite[] = { Math::NaN, Math::INF, -Math::INF };
325
326
CHECK_MESSAGE(
327
Vector4(0, 1, 2, 3).is_finite(),
328
"Vector4(0, 1, 2, 3) should be finite");
329
330
for (double x : infinite) {
331
CHECK_FALSE_MESSAGE(
332
Vector4(x, 1, 2, 3).is_finite(),
333
"Vector4 with one component infinite should not be finite.");
334
CHECK_FALSE_MESSAGE(
335
Vector4(0, x, 2, 3).is_finite(),
336
"Vector4 with one component infinite should not be finite.");
337
CHECK_FALSE_MESSAGE(
338
Vector4(0, 1, x, 3).is_finite(),
339
"Vector4 with one component infinite should not be finite.");
340
CHECK_FALSE_MESSAGE(
341
Vector4(0, 1, 2, x).is_finite(),
342
"Vector4 with one component infinite should not be finite.");
343
}
344
345
for (double x : infinite) {
346
for (double y : infinite) {
347
CHECK_FALSE_MESSAGE(
348
Vector4(x, y, 2, 3).is_finite(),
349
"Vector4 with two components infinite should not be finite.");
350
CHECK_FALSE_MESSAGE(
351
Vector4(x, 1, y, 3).is_finite(),
352
"Vector4 with two components infinite should not be finite.");
353
CHECK_FALSE_MESSAGE(
354
Vector4(x, 1, 2, y).is_finite(),
355
"Vector4 with two components infinite should not be finite.");
356
CHECK_FALSE_MESSAGE(
357
Vector4(0, x, y, 3).is_finite(),
358
"Vector4 with two components infinite should not be finite.");
359
CHECK_FALSE_MESSAGE(
360
Vector4(0, x, 2, y).is_finite(),
361
"Vector4 with two components infinite should not be finite.");
362
CHECK_FALSE_MESSAGE(
363
Vector4(0, 1, x, y).is_finite(),
364
"Vector4 with two components infinite should not be finite.");
365
}
366
}
367
368
for (double x : infinite) {
369
for (double y : infinite) {
370
for (double z : infinite) {
371
CHECK_FALSE_MESSAGE(
372
Vector4(0, x, y, z).is_finite(),
373
"Vector4 with three components infinite should not be finite.");
374
CHECK_FALSE_MESSAGE(
375
Vector4(x, 1, y, z).is_finite(),
376
"Vector4 with three components infinite should not be finite.");
377
CHECK_FALSE_MESSAGE(
378
Vector4(x, y, 2, z).is_finite(),
379
"Vector4 with three components infinite should not be finite.");
380
CHECK_FALSE_MESSAGE(
381
Vector4(x, y, z, 3).is_finite(),
382
"Vector4 with three components infinite should not be finite.");
383
}
384
}
385
}
386
387
for (double x : infinite) {
388
for (double y : infinite) {
389
for (double z : infinite) {
390
for (double w : infinite) {
391
CHECK_FALSE_MESSAGE(
392
Vector4(x, y, z, w).is_finite(),
393
"Vector4 with four components infinite should not be finite.");
394
}
395
}
396
}
397
}
398
}
399
400
} // namespace TestVector4
401
402