Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/tests/core/variant/test_array.h
10278 views
1
/**************************************************************************/
2
/* test_array.h */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#pragma once
32
33
#include "core/variant/array.h"
34
#include "tests/test_macros.h"
35
#include "tests/test_tools.h"
36
37
namespace TestArray {
38
TEST_CASE("[Array] initializer list") {
39
Array arr = { 0, 1, "test", true, { 0.0, 1.0 } };
40
CHECK(arr.size() == 5);
41
CHECK(arr[0] == Variant(0));
42
CHECK(arr[1] == Variant(1));
43
CHECK(arr[2] == Variant("test"));
44
CHECK(arr[3] == Variant(true));
45
CHECK(arr[4] == Variant({ 0.0, 1.0 }));
46
47
arr = { "reassign" };
48
CHECK(arr.size() == 1);
49
CHECK(arr[0] == Variant("reassign"));
50
51
TypedArray<int> typed_arr = { 0, 1, 2 };
52
CHECK(typed_arr.size() == 3);
53
CHECK(typed_arr[0] == Variant(0));
54
CHECK(typed_arr[1] == Variant(1));
55
CHECK(typed_arr[2] == Variant(2));
56
}
57
58
TEST_CASE("[Array] size(), clear(), and is_empty()") {
59
Array arr;
60
CHECK(arr.size() == 0);
61
CHECK(arr.is_empty());
62
arr.push_back(1);
63
CHECK(arr.size() == 1);
64
arr.clear();
65
CHECK(arr.is_empty());
66
CHECK(arr.size() == 0);
67
}
68
69
TEST_CASE("[Array] Assignment and comparison operators") {
70
Array arr1;
71
Array arr2;
72
arr1.push_back(1);
73
CHECK(arr1 != arr2);
74
CHECK(arr1 > arr2);
75
CHECK(arr1 >= arr2);
76
arr2.push_back(2);
77
CHECK(arr1 != arr2);
78
CHECK(arr1 < arr2);
79
CHECK(arr1 <= arr2);
80
CHECK(arr2 > arr1);
81
CHECK(arr2 >= arr1);
82
Array arr3 = arr2;
83
CHECK(arr3 == arr2);
84
}
85
86
TEST_CASE("[Array] append_array()") {
87
Array arr1;
88
Array arr2;
89
arr1.push_back(1);
90
arr1.append_array(arr2);
91
CHECK(arr1.size() == 1);
92
arr2.push_back(2);
93
arr1.append_array(arr2);
94
CHECK(arr1.size() == 2);
95
CHECK(int(arr1[0]) == 1);
96
CHECK(int(arr1[1]) == 2);
97
}
98
99
TEST_CASE("[Array] resize(), insert(), and erase()") {
100
Array arr;
101
arr.resize(2);
102
CHECK(arr.size() == 2);
103
arr.insert(0, 1);
104
CHECK(int(arr[0]) == 1);
105
arr.insert(0, 2);
106
CHECK(int(arr[0]) == 2);
107
arr.erase(2);
108
CHECK(int(arr[0]) == 1);
109
arr.resize(0);
110
CHECK(arr.size() == 0);
111
arr.insert(0, 8);
112
CHECK(arr.size() == 1);
113
arr.insert(1, 16);
114
CHECK(int(arr[1]) == 16);
115
arr.insert(-1, 3);
116
CHECK(int(arr[1]) == 3);
117
}
118
119
TEST_CASE("[Array] front() and back()") {
120
Array arr;
121
arr.push_back(1);
122
CHECK(int(arr.front()) == 1);
123
CHECK(int(arr.back()) == 1);
124
arr.push_back(3);
125
CHECK(int(arr.front()) == 1);
126
CHECK(int(arr.back()) == 3);
127
}
128
129
TEST_CASE("[Array] has() and count()") {
130
Array arr = { 1, 1 };
131
CHECK(arr.has(1));
132
CHECK(!arr.has(2));
133
CHECK(arr.count(1) == 2);
134
CHECK(arr.count(2) == 0);
135
}
136
137
TEST_CASE("[Array] remove_at()") {
138
Array arr = { 1, 2 };
139
arr.remove_at(0);
140
CHECK(arr.size() == 1);
141
CHECK(int(arr[0]) == 2);
142
arr.remove_at(0);
143
CHECK(arr.size() == 0);
144
145
// Negative index.
146
arr.push_back(3);
147
arr.push_back(4);
148
arr.remove_at(-1);
149
CHECK(arr.size() == 1);
150
CHECK(int(arr[0]) == 3);
151
arr.remove_at(-1);
152
CHECK(arr.size() == 0);
153
154
// The array is now empty; try to use `remove_at()` again.
155
// Normally, this prints an error message so we silence it.
156
ERR_PRINT_OFF;
157
arr.remove_at(0);
158
ERR_PRINT_ON;
159
160
CHECK(arr.size() == 0);
161
}
162
163
TEST_CASE("[Array] get()") {
164
Array arr = { 1 };
165
CHECK(int(arr.get(0)) == 1);
166
}
167
168
TEST_CASE("[Array] sort()") {
169
Array arr = { 3, 4, 2, 1 };
170
arr.sort();
171
int val = 1;
172
for (int i = 0; i < arr.size(); i++) {
173
CHECK(int(arr[i]) == val);
174
val++;
175
}
176
}
177
178
TEST_CASE("[Array] push_front(), pop_front(), pop_back()") {
179
Array arr;
180
arr.push_front(1);
181
arr.push_front(2);
182
CHECK(int(arr[0]) == 2);
183
arr.pop_front();
184
CHECK(int(arr[0]) == 1);
185
CHECK(arr.size() == 1);
186
arr.push_front(2);
187
arr.push_front(3);
188
arr.pop_back();
189
CHECK(int(arr[1]) == 2);
190
CHECK(arr.size() == 2);
191
}
192
193
TEST_CASE("[Array] pop_at()") {
194
ErrorDetector ed;
195
196
Array arr = { 2, 4, 6, 8, 10 };
197
198
REQUIRE(int(arr.pop_at(2)) == 6);
199
REQUIRE(arr.size() == 4);
200
CHECK(int(arr[0]) == 2);
201
CHECK(int(arr[1]) == 4);
202
CHECK(int(arr[2]) == 8);
203
CHECK(int(arr[3]) == 10);
204
205
REQUIRE(int(arr.pop_at(2)) == 8);
206
REQUIRE(arr.size() == 3);
207
CHECK(int(arr[0]) == 2);
208
CHECK(int(arr[1]) == 4);
209
CHECK(int(arr[2]) == 10);
210
211
// Negative index.
212
REQUIRE(int(arr.pop_at(-1)) == 10);
213
REQUIRE(arr.size() == 2);
214
CHECK(int(arr[0]) == 2);
215
CHECK(int(arr[1]) == 4);
216
217
// Invalid pop.
218
ed.clear();
219
ERR_PRINT_OFF;
220
const Variant ret = arr.pop_at(-15);
221
ERR_PRINT_ON;
222
REQUIRE(ret.is_null());
223
CHECK(ed.has_error);
224
225
REQUIRE(int(arr.pop_at(0)) == 2);
226
REQUIRE(arr.size() == 1);
227
CHECK(int(arr[0]) == 4);
228
229
REQUIRE(int(arr.pop_at(0)) == 4);
230
REQUIRE(arr.is_empty());
231
232
// Pop from empty array.
233
ed.clear();
234
REQUIRE(arr.pop_at(24).is_null());
235
CHECK_FALSE(ed.has_error);
236
}
237
238
TEST_CASE("[Array] max() and min()") {
239
Array arr;
240
arr.push_back(3);
241
arr.push_front(4);
242
arr.push_back(5);
243
arr.push_back(2);
244
int max = int(arr.max());
245
int min = int(arr.min());
246
CHECK(max == 5);
247
CHECK(min == 2);
248
}
249
250
TEST_CASE("[Array] slice()") {
251
Array array = { 0, 1, 2, 3, 4, 5 };
252
253
Array slice0 = array.slice(0, 0);
254
CHECK(slice0.size() == 0);
255
256
Array slice1 = array.slice(1, 3);
257
CHECK(slice1.size() == 2);
258
CHECK(slice1[0] == Variant(1));
259
CHECK(slice1[1] == Variant(2));
260
261
Array slice2 = array.slice(1, -1);
262
CHECK(slice2.size() == 4);
263
CHECK(slice2[0] == Variant(1));
264
CHECK(slice2[1] == Variant(2));
265
CHECK(slice2[2] == Variant(3));
266
CHECK(slice2[3] == Variant(4));
267
268
Array slice3 = array.slice(3);
269
CHECK(slice3.size() == 3);
270
CHECK(slice3[0] == Variant(3));
271
CHECK(slice3[1] == Variant(4));
272
CHECK(slice3[2] == Variant(5));
273
274
Array slice4 = array.slice(2, -2);
275
CHECK(slice4.size() == 2);
276
CHECK(slice4[0] == Variant(2));
277
CHECK(slice4[1] == Variant(3));
278
279
Array slice5 = array.slice(-2);
280
CHECK(slice5.size() == 2);
281
CHECK(slice5[0] == Variant(4));
282
CHECK(slice5[1] == Variant(5));
283
284
Array slice6 = array.slice(2, 42);
285
CHECK(slice6.size() == 4);
286
CHECK(slice6[0] == Variant(2));
287
CHECK(slice6[1] == Variant(3));
288
CHECK(slice6[2] == Variant(4));
289
CHECK(slice6[3] == Variant(5));
290
291
Array slice7 = array.slice(4, 0, -2);
292
CHECK(slice7.size() == 2);
293
CHECK(slice7[0] == Variant(4));
294
CHECK(slice7[1] == Variant(2));
295
296
Array slice8 = array.slice(5, 0, -2);
297
CHECK(slice8.size() == 3);
298
CHECK(slice8[0] == Variant(5));
299
CHECK(slice8[1] == Variant(3));
300
CHECK(slice8[2] == Variant(1));
301
302
Array slice9 = array.slice(10, 0, -2);
303
CHECK(slice9.size() == 3);
304
CHECK(slice9[0] == Variant(5));
305
CHECK(slice9[1] == Variant(3));
306
CHECK(slice9[2] == Variant(1));
307
308
Array slice10 = array.slice(2, -10, -1);
309
CHECK(slice10.size() == 3);
310
CHECK(slice10[0] == Variant(2));
311
CHECK(slice10[1] == Variant(1));
312
CHECK(slice10[2] == Variant(0));
313
314
ERR_PRINT_OFF;
315
Array slice11 = array.slice(4, 1);
316
CHECK(slice11.size() == 0);
317
318
Array slice12 = array.slice(3, -4);
319
CHECK(slice12.size() == 0);
320
ERR_PRINT_ON;
321
322
Array slice13 = Array().slice(1);
323
CHECK(slice13.size() == 0);
324
325
Array slice14 = array.slice(6);
326
CHECK(slice14.size() == 0);
327
}
328
329
TEST_CASE("[Array] Duplicate array") {
330
// a = [1, [2, 2], {3: 3}]
331
Array a = { 1, { 2, 2 }, Dictionary({ { 3, 3 } }) };
332
333
// Deep copy
334
Array deep_a = a.duplicate(true);
335
CHECK_MESSAGE(deep_a.id() != a.id(), "Should create a new array");
336
CHECK_MESSAGE(Array(deep_a[1]).id() != Array(a[1]).id(), "Should clone nested array");
337
CHECK_MESSAGE(Dictionary(deep_a[2]).id() != Dictionary(a[2]).id(), "Should clone nested dictionary");
338
CHECK_EQ(deep_a, a);
339
deep_a.push_back(1);
340
CHECK_NE(deep_a, a);
341
deep_a.pop_back();
342
Array(deep_a[1]).push_back(1);
343
CHECK_NE(deep_a, a);
344
Array(deep_a[1]).pop_back();
345
CHECK_EQ(deep_a, a);
346
347
// Shallow copy
348
Array shallow_a = a.duplicate(false);
349
CHECK_MESSAGE(shallow_a.id() != a.id(), "Should create a new array");
350
CHECK_MESSAGE(Array(shallow_a[1]).id() == Array(a[1]).id(), "Should keep nested array");
351
CHECK_MESSAGE(Dictionary(shallow_a[2]).id() == Dictionary(a[2]).id(), "Should keep nested dictionary");
352
CHECK_EQ(shallow_a, a);
353
Array(shallow_a).push_back(1);
354
CHECK_NE(shallow_a, a);
355
}
356
357
TEST_CASE("[Array] Duplicate recursive array") {
358
// Self recursive
359
Array a;
360
a.push_back(a);
361
362
Array a_shallow = a.duplicate(false);
363
CHECK_EQ(a, a_shallow);
364
365
// Deep copy of recursive array ends up with recursion limit and return
366
// an invalid result (multiple nested arrays), the point is we should
367
// not end up with a segfault and an error log should be printed
368
ERR_PRINT_OFF;
369
a.duplicate(true);
370
ERR_PRINT_ON;
371
372
// Nested recursive
373
Array a1;
374
Array a2;
375
a2.push_back(a1);
376
a1.push_back(a2);
377
378
Array a1_shallow = a1.duplicate(false);
379
CHECK_EQ(a1, a1_shallow);
380
381
// Same deep copy issue as above
382
ERR_PRINT_OFF;
383
a1.duplicate(true);
384
ERR_PRINT_ON;
385
386
// Break the recursivity otherwise Array teardown will leak memory
387
a.clear();
388
a1.clear();
389
a2.clear();
390
}
391
392
TEST_CASE("[Array] Hash array") {
393
// a = [1, [2, 2], {3: 3}]
394
Array a = { 1, { 2, 2 }, Dictionary({ { 3, 3 } }) };
395
uint32_t original_hash = a.hash();
396
397
a.push_back(1);
398
CHECK_NE(a.hash(), original_hash);
399
400
a.pop_back();
401
CHECK_EQ(a.hash(), original_hash);
402
403
Array(a[1]).push_back(1);
404
CHECK_NE(a.hash(), original_hash);
405
Array(a[1]).pop_back();
406
CHECK_EQ(a.hash(), original_hash);
407
408
(Dictionary(a[2]))[1] = 1;
409
CHECK_NE(a.hash(), original_hash);
410
Dictionary(a[2]).erase(1);
411
CHECK_EQ(a.hash(), original_hash);
412
413
Array a2 = a.duplicate(true);
414
CHECK_EQ(a2.hash(), a.hash());
415
}
416
417
TEST_CASE("[Array] Hash recursive array") {
418
Array a1;
419
a1.push_back(a1);
420
421
Array a2;
422
a2.push_back(a2);
423
424
// Hash should reach recursion limit
425
ERR_PRINT_OFF;
426
CHECK_EQ(a1.hash(), a2.hash());
427
ERR_PRINT_ON;
428
429
// Break the recursivity otherwise Array teardown will leak memory
430
a1.clear();
431
a2.clear();
432
}
433
434
TEST_CASE("[Array] Empty comparison") {
435
Array a1;
436
Array a2;
437
438
// test both operator== and operator!=
439
CHECK_EQ(a1, a2);
440
CHECK_FALSE(a1 != a2);
441
}
442
443
TEST_CASE("[Array] Flat comparison") {
444
Array a1 = { 1 };
445
Array a2 = { 1 };
446
Array other_a = { 2 };
447
448
// test both operator== and operator!=
449
CHECK_EQ(a1, a1); // compare self
450
CHECK_FALSE(a1 != a1);
451
CHECK_EQ(a1, a2); // different equivalent arrays
452
CHECK_FALSE(a1 != a2);
453
CHECK_NE(a1, other_a); // different arrays with different content
454
CHECK_FALSE(a1 == other_a);
455
}
456
457
TEST_CASE("[Array] Nested array comparison") {
458
// a1 = [[[1], 2], 3]
459
Array a1 = { { { 1 }, 2 }, 3 };
460
461
Array a2 = a1.duplicate(true);
462
463
// other_a = [[[1, 0], 2], 3]
464
Array other_a = { { { 1, 0 }, 2 }, 3 };
465
466
// test both operator== and operator!=
467
CHECK_EQ(a1, a1); // compare self
468
CHECK_FALSE(a1 != a1);
469
CHECK_EQ(a1, a2); // different equivalent arrays
470
CHECK_FALSE(a1 != a2);
471
CHECK_NE(a1, other_a); // different arrays with different content
472
CHECK_FALSE(a1 == other_a);
473
}
474
475
TEST_CASE("[Array] Nested dictionary comparison") {
476
// a1 = [{1: 2}, 3]
477
Array a1 = { Dictionary({ { 1, 2 } }), 3 };
478
479
Array a2 = a1.duplicate(true);
480
481
// other_a = [{1: 0}, 3]
482
Array other_a = { Dictionary({ { 1, 0 } }), 3 };
483
484
// test both operator== and operator!=
485
CHECK_EQ(a1, a1); // compare self
486
CHECK_FALSE(a1 != a1);
487
CHECK_EQ(a1, a2); // different equivalent arrays
488
CHECK_FALSE(a1 != a2);
489
CHECK_NE(a1, other_a); // different arrays with different content
490
CHECK_FALSE(a1 == other_a);
491
}
492
493
TEST_CASE("[Array] Recursive comparison") {
494
Array a1;
495
a1.push_back(a1);
496
497
Array a2;
498
a2.push_back(a2);
499
500
// Comparison should reach recursion limit
501
ERR_PRINT_OFF;
502
CHECK_EQ(a1, a2);
503
CHECK_FALSE(a1 != a2);
504
ERR_PRINT_ON;
505
506
a1.push_back(1);
507
a2.push_back(1);
508
509
// Comparison should reach recursion limit
510
ERR_PRINT_OFF;
511
CHECK_EQ(a1, a2);
512
CHECK_FALSE(a1 != a2);
513
ERR_PRINT_ON;
514
515
a1.push_back(1);
516
a2.push_back(2);
517
518
// Comparison should reach recursion limit
519
ERR_PRINT_OFF;
520
CHECK_NE(a1, a2);
521
CHECK_FALSE(a1 == a2);
522
ERR_PRINT_ON;
523
524
// Break the recursivity otherwise Array tearndown will leak memory
525
a1.clear();
526
a2.clear();
527
}
528
529
TEST_CASE("[Array] Recursive self comparison") {
530
Array a1;
531
Array a2;
532
a2.push_back(a1);
533
a1.push_back(a2);
534
535
CHECK_EQ(a1, a1);
536
CHECK_FALSE(a1 != a1);
537
538
// Break the recursivity otherwise Array tearndown will leak memory
539
a1.clear();
540
a2.clear();
541
}
542
543
TEST_CASE("[Array] Iteration") {
544
Array a1 = { 1, 2, 3 };
545
Array a2 = { 1, 2, 3 };
546
547
int idx = 0;
548
for (Variant &E : a1) {
549
CHECK_EQ(int(a2[idx]), int(E));
550
idx++;
551
}
552
553
CHECK_EQ(idx, a1.size());
554
555
idx = 0;
556
557
for (const Variant &E : (const Array &)a1) {
558
CHECK_EQ(int(a2[idx]), int(E));
559
idx++;
560
}
561
562
CHECK_EQ(idx, a1.size());
563
564
a1.clear();
565
}
566
567
TEST_CASE("[Array] Iteration and modification") {
568
Array a1 = { 1, 2, 3 };
569
Array a2 = { 2, 3, 4 };
570
Array a3 = { 1, 2, 3 };
571
Array a4 = { 1, 2, 3 };
572
a3.make_read_only();
573
574
int idx = 0;
575
for (Variant &E : a1) {
576
E = a2[idx];
577
idx++;
578
}
579
580
CHECK_EQ(a1, a2);
581
582
// Ensure read-only is respected.
583
idx = 0;
584
for (Variant &E : a3) {
585
E = a2[idx];
586
}
587
588
CHECK_EQ(a3, a4);
589
590
a1.clear();
591
a2.clear();
592
a4.clear();
593
}
594
595
TEST_CASE("[Array] Typed copying") {
596
TypedArray<int> a1 = { 1 };
597
TypedArray<double> a2 = { 1.0 };
598
599
Array a3 = a1;
600
TypedArray<int> a4 = a3;
601
602
Array a5 = a2;
603
TypedArray<int> a6 = a5;
604
605
a3[0] = 2;
606
a4[0] = 3;
607
608
// Same typed TypedArray should be shared.
609
CHECK_EQ(a1[0], Variant(3));
610
CHECK_EQ(a3[0], Variant(3));
611
CHECK_EQ(a4[0], Variant(3));
612
613
a5[0] = 2.0;
614
a6[0] = 3.0;
615
616
// Different typed TypedArray should not be shared.
617
CHECK_EQ(a2[0], Variant(2.0));
618
CHECK_EQ(a5[0], Variant(2.0));
619
CHECK_EQ(a6[0], Variant(3.0));
620
621
a1.clear();
622
a2.clear();
623
a3.clear();
624
a4.clear();
625
a5.clear();
626
a6.clear();
627
}
628
629
static bool _find_custom_callable(const Variant &p_val) {
630
return (int)p_val % 2 == 0;
631
}
632
633
TEST_CASE("[Array] Test find_custom") {
634
Array a1 = { 1, 3, 4, 5, 8, 9 };
635
// Find first even number.
636
int index = a1.find_custom(callable_mp_static(_find_custom_callable));
637
CHECK_EQ(index, 2);
638
}
639
640
TEST_CASE("[Array] Test rfind_custom") {
641
Array a1 = { 1, 3, 4, 5, 8, 9 };
642
// Find last even number.
643
int index = a1.rfind_custom(callable_mp_static(_find_custom_callable));
644
CHECK_EQ(index, 4);
645
}
646
647
} // namespace TestArray
648
649