#include "ppsspp_config.h"
#if PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Profiler/Profiler.h"
#include "Core/Config.h"
#include "Core/Core.h"
#include "Core/Reporting.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/HLETables.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/MIPSAnalyst.h"
#include "Core/MIPS/MIPSTables.h"
#include "Core/MIPS/x86/Jit.h"
#include "Core/MIPS/x86/RegCache.h"
#include "Core/MIPS/JitCommon/JitBlockCache.h"
#define _RS MIPS_GET_RS(op)
#define _RT MIPS_GET_RT(op)
#define _RD MIPS_GET_RD(op)
#define _FS MIPS_GET_FS(op)
#define _FT MIPS_GET_FT(op)
#define _FD MIPS_GET_FD(op)
#define _SA MIPS_GET_SA(op)
#define _POS ((op>> 6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
#define _IMM26 (op & 0x03FFFFFF)
#define TARGET16 ((int)(SignExtend16ToU32(op) << 2))
#define TARGET26 (_IMM26 << 2)
#define LOOPOPTIMIZATION 0
using namespace MIPSAnalyst;
#define DO_CONDITIONAL_LOG 0
#define CONDITIONAL_NICE_DELAYSLOT ;
#if DO_CONDITIONAL_LOG
#define CONDITIONAL_LOG BranchLog(op);
#define CONDITIONAL_LOG_EXIT(addr) BranchLogExit(op, addr, false);
#define CONDITIONAL_LOG_EXIT_EAX() BranchLogExit(op, 0, true);
#else
#define CONDITIONAL_LOG ;
#define CONDITIONAL_LOG_EXIT(addr) ;
#define CONDITIONAL_LOG_EXIT_EAX() ;
#endif
namespace MIPSComp
{
using namespace Gen;
static void JitBranchLog(MIPSOpcode op, u32 pc) {
currentMIPS->pc = pc;
currentMIPS->inDelaySlot = false;
MIPSInterpretFunc func = MIPSGetInterpretFunc(op);
MIPSInfo info = MIPSGetInfo(op);
func(op);
if (currentMIPS->inDelaySlot)
currentMIPS->intBranchExit = currentMIPS->nextPC;
else
{
if (info & LIKELY)
currentMIPS->intBranchExit = currentMIPS->pc;
else
currentMIPS->intBranchExit = currentMIPS->pc + 4;
}
currentMIPS->pc = pc;
currentMIPS->inDelaySlot = false;
}
static void JitBranchLogMismatch(MIPSOpcode op, u32 pc)
{
char temp[256];
MIPSDisAsm(op, pc, temp, sizeof(temp), true);
ERROR_LOG(Log::JIT, "Bad jump: %s - int:%08x jit:%08x", temp, currentMIPS->intBranchExit, currentMIPS->jitBranchExit);
Core_Break(BreakReason::JitBranchDebug, pc);
}
void Jit::BranchLog(MIPSOpcode op)
{
FlushAll();
ABI_CallFunctionCC(thunks.ProtectFunction(&JitBranchLog), op.encoding, GetCompilerPC());
}
void Jit::BranchLogExit(MIPSOpcode op, u32 dest, bool useEAX)
{
OpArg destArg = useEAX ? R(EAX) : Imm32(dest);
CMP(32, MIPSSTATE_VAR(intBranchExit), destArg);
FixupBranch skip = J_CC(CC_E);
MOV(32, MIPSSTATE_VAR(jitBranchExit), destArg);
ABI_CallFunctionCC(thunks.ProtectFunction(&JitBranchLogMismatch), op.encoding, GetCompilerPC());
if (useEAX)
MOV(32, R(EAX), MIPSSTATE_VAR(jitBranchExit));
SetJumpTarget(skip);
}
CCFlags Jit::FlipCCFlag(CCFlags flag)
{
switch (flag)
{
case CC_O: return CC_NO;
case CC_NO: return CC_O;
case CC_B: return CC_NB;
case CC_NB: return CC_B;
case CC_Z: return CC_NZ;
case CC_NZ: return CC_Z;
case CC_BE: return CC_NBE;
case CC_NBE: return CC_BE;
case CC_S: return CC_NS;
case CC_NS: return CC_S;
case CC_P: return CC_NP;
case CC_NP: return CC_P;
case CC_L: return CC_NL;
case CC_NL: return CC_L;
case CC_LE: return CC_NLE;
case CC_NLE: return CC_LE;
}
ERROR_LOG_REPORT(Log::JIT, "FlipCCFlag: Unexpected CC flag: %d", flag);
return CC_O;
}
CCFlags Jit::SwapCCFlag(CCFlags flag)
{
switch (flag)
{
case CC_O: return CC_O;
case CC_NO: return CC_NO;
case CC_B: return CC_A;
case CC_NB: return CC_NA;
case CC_Z: return CC_Z;
case CC_NZ: return CC_NZ;
case CC_BE: return CC_AE;
case CC_NBE: return CC_NAE;
case CC_S: return CC_S;
case CC_NS: return CC_NS;
case CC_P: return CC_P;
case CC_NP: return CC_NP;
case CC_L: return CC_G;
case CC_NL: return CC_NG;
case CC_LE: return CC_GE;
case CC_NLE: return CC_NGE;
}
ERROR_LOG_REPORT(Log::JIT, "SwapCCFlag: Unexpected CC flag: %d", flag);
return CC_O;
}
bool Jit::PredictTakeBranch(u32 targetAddr, bool likely) {
if (likely)
return true;
return targetAddr > GetCompilerPC();
}
void Jit::CompBranchExits(CCFlags cc, u32 targetAddr, u32 notTakenAddr, const BranchInfo &branchInfo) {
if (branchInfo.andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
bool predictTakeBranch = PredictTakeBranch(targetAddr, branchInfo.likely);
if (!branchInfo.delaySlotIsBranch && CanContinueBranch(predictTakeBranch ? targetAddr : notTakenAddr))
{
if (predictTakeBranch)
cc = FlipCCFlag(cc);
Gen::FixupBranch ptr;
RegCacheState state;
if (!branchInfo.likely)
{
if (!branchInfo.delaySlotIsNice)
CompileDelaySlot(DELAYSLOT_SAFE);
ptr = J_CC(cc, true);
GetStateAndFlushAll(state);
}
else
{
ptr = J_CC(cc, true);
if (predictTakeBranch)
GetStateAndFlushAll(state);
else
{
gpr.GetState(state.gpr);
fpr.GetState(state.fpr);
CompileDelaySlot(DELAYSLOT_FLUSH);
}
}
if (predictTakeBranch)
{
CONDITIONAL_LOG_EXIT(notTakenAddr);
WriteExit(notTakenAddr, js.nextExit++);
SetJumpTarget(ptr);
RestoreState(state);
CONDITIONAL_LOG_EXIT(targetAddr);
if (branchInfo.likely)
CompileDelaySlot(DELAYSLOT_NICE);
AddContinuedBlock(targetAddr);
js.compilerPC = targetAddr - 4;
js.compiling = true;
}
else
{
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
SetJumpTarget(ptr);
RestoreState(state);
CONDITIONAL_LOG_EXIT(notTakenAddr);
js.compilerPC += 4;
js.compiling = true;
}
}
else
{
Gen::FixupBranch ptr;
if (!branchInfo.likely)
{
if (!branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch)
CompileDelaySlot(DELAYSLOT_SAFE_FLUSH);
else
FlushAll();
ptr = J_CC(cc, true);
}
else
{
FlushAll();
ptr = J_CC(cc, true);
if (!branchInfo.delaySlotIsBranch)
CompileDelaySlot(DELAYSLOT_FLUSH);
}
if (branchInfo.delaySlotIsBranch) {
if ((branchInfo.delaySlotInfo & OUT_RA) != 0)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 12);
if ((branchInfo.delaySlotInfo & OUT_RD) != 0)
gpr.SetImm(MIPS_GET_RD(branchInfo.delaySlotOp), GetCompilerPC() + 12);
FlushAll();
}
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
SetJumpTarget(ptr);
CONDITIONAL_LOG_EXIT(notTakenAddr);
WriteExit(notTakenAddr, js.nextExit++);
js.compiling = false;
}
}
void Jit::CompBranchExit(bool taken, u32 targetAddr, u32 notTakenAddr, const BranchInfo &branchInfo) {
if (branchInfo.andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
if (branchInfo.delaySlotIsBranch) {
if (taken) {
if ((branchInfo.delaySlotInfo & OUT_RA) != 0)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 12);
if ((branchInfo.delaySlotInfo & OUT_RD) != 0)
gpr.SetImm(MIPS_GET_RD(branchInfo.delaySlotOp), GetCompilerPC() + 12);
}
FlushAll();
} else if (taken || !branchInfo.likely) {
CompileDelaySlot(DELAYSLOT_FLUSH);
} else {
FlushAll();
}
const u32 destAddr = taken ? targetAddr : notTakenAddr;
CONDITIONAL_LOG_EXIT(destAddr);
WriteExit(destAddr, js.nextExit++);
js.compiling = false;
}
void Jit::BranchRSRTComp(MIPSOpcode op, Gen::CCFlags cc, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(Log::JIT, "Branch in RSRTComp delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = TARGET16;
MIPSGPReg rt = _RT;
MIPSGPReg rs = _RS;
u32 targetAddr = GetCompilerPC() + offset + 4;
BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), false, likely);
branchInfo.delaySlotIsNice = IsDelaySlotNiceReg(op, branchInfo.delaySlotOp, rt, rs);
CONDITIONAL_NICE_DELAYSLOT;
bool immBranch = false;
bool immBranchTaken = false;
if (gpr.IsImm(rs) && gpr.IsImm(rt) && !branchInfo.delaySlotIsBranch) {
bool immBranchNotTaken;
s32 rsImm = (s32)gpr.GetImm(rs);
s32 rtImm = (s32)gpr.GetImm(rt);
switch (cc)
{
case CC_E: immBranchNotTaken = rsImm == rtImm; break;
case CC_NE: immBranchNotTaken = rsImm != rtImm; break;
default: immBranchNotTaken = false; _dbg_assert_msg_(false, "Bad cc flag in BranchRSRTComp().");
}
immBranch = true;
immBranchTaken = !immBranchNotTaken;
}
if (jo.immBranches && immBranch && js.numInstructions < jo.continueMaxInstructions)
{
if (!immBranchTaken)
{
if (likely)
js.compilerPC += 4;
return;
}
CompileDelaySlot(DELAYSLOT_NICE);
AddContinuedBlock(targetAddr);
js.compilerPC = targetAddr - 4;
js.compiling = true;
return;
}
js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp);
u32 notTakenTarget = ResolveNotTakenTarget(branchInfo);
if (immBranch)
CompBranchExit(immBranchTaken, targetAddr, notTakenTarget, branchInfo);
else
{
if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch)
CompileDelaySlot(DELAYSLOT_NICE);
if (gpr.IsImm(rt) && gpr.GetImm(rt) == 0)
{
gpr.KillImmediate(rs, true, false);
CMP(32, gpr.R(rs), Imm32(0));
}
else
{
gpr.MapReg(rs, true, false);
CMP(32, gpr.R(rs), gpr.R(rt));
}
CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo);
}
}
void Jit::BranchRSZeroComp(MIPSOpcode op, Gen::CCFlags cc, bool andLink, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(Log::JIT, "Branch in RSZeroComp delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = TARGET16;
MIPSGPReg rs = _RS;
u32 targetAddr = GetCompilerPC() + offset + 4;
BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), andLink, likely);
branchInfo.delaySlotIsNice = IsDelaySlotNiceReg(op, branchInfo.delaySlotOp, rs);
js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp);
CONDITIONAL_NICE_DELAYSLOT;
bool immBranch = false;
bool immBranchTaken = false;
if (gpr.IsImm(rs) && !branchInfo.delaySlotIsBranch) {
bool immBranchNotTaken;
s32 imm = (s32)gpr.GetImm(rs);
switch (cc)
{
case CC_G: immBranchNotTaken = imm > 0; break;
case CC_GE: immBranchNotTaken = imm >= 0; break;
case CC_L: immBranchNotTaken = imm < 0; break;
case CC_LE: immBranchNotTaken = imm <= 0; break;
default: immBranchNotTaken = false; _dbg_assert_msg_(false, "Bad cc flag in BranchRSZeroComp().");
}
immBranch = true;
immBranchTaken = !immBranchNotTaken;
}
if (jo.immBranches && immBranch && js.numInstructions < jo.continueMaxInstructions)
{
if (!immBranchTaken)
{
if (andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
if (likely)
js.compilerPC += 4;
return;
}
if (andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
AddContinuedBlock(targetAddr);
js.compilerPC = targetAddr - 4;
js.compiling = true;
return;
}
js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp);
u32 notTakenTarget = ResolveNotTakenTarget(branchInfo);
if (immBranch)
CompBranchExit(immBranchTaken, targetAddr, notTakenTarget, branchInfo);
else
{
if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch)
CompileDelaySlot(DELAYSLOT_NICE);
gpr.MapReg(rs, true, false);
CMP(32, gpr.R(rs), Imm32(0));
CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo);
}
}
void Jit::Comp_RelBranch(MIPSOpcode op)
{
switch (op>>26)
{
case 4: BranchRSRTComp(op, CC_NZ, false); break;
case 5: BranchRSRTComp(op, CC_Z, false); break;
case 6: BranchRSZeroComp(op, CC_G, false, false); break;
case 7: BranchRSZeroComp(op, CC_LE, false, false); break;
case 20: BranchRSRTComp(op, CC_NZ, true); break;
case 21: BranchRSRTComp(op, CC_Z, true); break;
case 22: BranchRSZeroComp(op, CC_G, false, true); break;
case 23: BranchRSZeroComp(op, CC_LE, false, true); break;
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
}
void Jit::Comp_RelBranchRI(MIPSOpcode op)
{
switch ((op >> 16) & 0x1F)
{
case 0: BranchRSZeroComp(op, CC_GE, false, false); break;
case 1: BranchRSZeroComp(op, CC_L, false, false); break;
case 2: BranchRSZeroComp(op, CC_GE, false, true); break;
case 3: BranchRSZeroComp(op, CC_L, false, true); break;
case 16: BranchRSZeroComp(op, CC_GE, true, false); break;
case 17: BranchRSZeroComp(op, CC_L, true, false); break;
case 18: BranchRSZeroComp(op, CC_GE, true, true); break;
case 19: BranchRSZeroComp(op, CC_L, true, true); break;
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
}
void Jit::BranchFPFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(Log::JIT, "Branch in FPFlag delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = TARGET16;
u32 targetAddr = GetCompilerPC() + offset + 4;
BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), false, likely);
branchInfo.delaySlotIsNice = IsDelaySlotNiceFPU(op, branchInfo.delaySlotOp);
CONDITIONAL_NICE_DELAYSLOT;
js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp);
if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch)
CompileDelaySlot(DELAYSLOT_NICE);
gpr.KillImmediate(MIPS_REG_FPCOND, true, false);
TEST(32, gpr.R(MIPS_REG_FPCOND), Imm32(1));
u32 notTakenTarget = ResolveNotTakenTarget(branchInfo);
CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo);
}
void Jit::Comp_FPUBranch(MIPSOpcode op)
{
switch((op >> 16) & 0x1f)
{
case 0: BranchFPFlag(op, CC_NZ, false); break;
case 1: BranchFPFlag(op, CC_Z, false); break;
case 2: BranchFPFlag(op, CC_NZ, true); break;
case 3: BranchFPFlag(op, CC_Z, true); break;
default:
_dbg_assert_msg_(false,"Trying to interpret instruction that can't be interpreted");
break;
}
}
void Jit::BranchVFPUFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
WARN_LOG(Log::JIT, "Branch in VFPU delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = TARGET16;
u32 targetAddr = GetCompilerPC() + offset + 4;
BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), false, likely);
branchInfo.delaySlotIsNice = IsDelaySlotNiceVFPU(op, branchInfo.delaySlotOp);
CONDITIONAL_NICE_DELAYSLOT;
js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp);
if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch)
CompileDelaySlot(DELAYSLOT_NICE);
int imm3 = (op >> 18) & 7;
gpr.KillImmediate(MIPS_REG_VFPUCC, true, false);
TEST(32, gpr.R(MIPS_REG_VFPUCC), Imm32(1 << imm3));
u32 notTakenTarget = ResolveNotTakenTarget(branchInfo);
CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo);
}
void Jit::Comp_VBranch(MIPSOpcode op)
{
switch ((op >> 16) & 3)
{
case 0: BranchVFPUFlag(op, CC_NZ, false); break;
case 1: BranchVFPUFlag(op, CC_Z, false); break;
case 2: BranchVFPUFlag(op, CC_NZ, true); break;
case 3: BranchVFPUFlag(op, CC_Z, true); break;
default:
_dbg_assert_msg_(false,"Comp_VBranch: Invalid instruction");
break;
}
}
static void HitInvalidJump(uint32_t dest) {
Core_ExecException(dest, currentMIPS->pc - 8, ExecExceptionType::JUMP);
}
void Jit::Comp_Jump(MIPSOpcode op) {
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(Log::JIT, "Branch in Jump delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
u32 off = TARGET26;
u32 targetAddr = (GetCompilerPC() & 0xF0000000) | off;
if (!Memory::IsValidAddress(targetAddr) || (targetAddr & 3) != 0) {
if (js.nextExit == 0) {
ERROR_LOG(Log::JIT, "Jump to invalid address: %08x PC %08x LR %08x", targetAddr, GetCompilerPC(), currentMIPS->r[MIPS_REG_RA]);
} else {
js.compiling = false;
}
CompileDelaySlot(DELAYSLOT_NICE);
FlushAll();
MOV(32, MIPSSTATE_VAR(pc), Imm32(GetCompilerPC() + 8));
ABI_CallFunctionC(&HitInvalidJump, targetAddr);
WriteSyscallExit();
return;
}
switch (op >> 26) {
case 2:
CompileDelaySlot(DELAYSLOT_NICE);
if (CanContinueJump(targetAddr))
{
AddContinuedBlock(targetAddr);
js.compilerPC = targetAddr - 4;
js.compiling = true;
return;
}
FlushAll();
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
break;
case 3:
if (ReplaceJalTo(targetAddr))
return;
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
if (CanContinueJump(targetAddr))
{
AddContinuedBlock(targetAddr);
js.compilerPC = targetAddr - 4;
js.compiling = true;
return;
}
FlushAll();
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
break;
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
js.compiling = false;
}
void Jit::Comp_JumpReg(MIPSOpcode op)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(Log::JIT, "Branch in JumpReg delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
MIPSGPReg rs = _RS;
MIPSGPReg rd = _RD;
bool andLink = (op & 0x3f) == 9 && rd != MIPS_REG_ZERO;
MIPSOpcode delaySlotOp = GetOffsetInstruction(1);
js.downcountAmount += MIPSGetInstructionCycleEstimate(delaySlotOp);
bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rs);
if (andLink && rs == rd)
delaySlotIsNice = false;
CONDITIONAL_NICE_DELAYSLOT;
X64Reg destReg = EAX;
if (IsSyscall(delaySlotOp))
{
gpr.MapReg(rs, true, false);
MOV(32, MIPSSTATE_VAR(pc), gpr.R(rs));
if (andLink)
gpr.SetImm(rd, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_FLUSH);
_dbg_assert_msg_(!js.compiling, "Expected syscall to write an exit code.");
return;
}
else if (delaySlotIsNice)
{
if (andLink)
gpr.SetImm(rd, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
if (!andLink && rs == MIPS_REG_RA && g_Config.bDiscardRegsOnJRRA) {
gpr.DiscardRegContentsIfCached(MIPS_REG_COMPILER_SCRATCH);
for (int i = MIPS_REG_A0; i <= MIPS_REG_T7; i++)
gpr.DiscardRegContentsIfCached((MIPSGPReg)i);
gpr.DiscardRegContentsIfCached(MIPS_REG_T8);
gpr.DiscardRegContentsIfCached(MIPS_REG_T9);
}
if (gpr.IsImm(rs) && CanContinueJump(gpr.GetImm(rs)))
{
AddContinuedBlock(gpr.GetImm(rs));
js.compilerPC = gpr.GetImm(rs) - 4;
js.compiling = true;
return;
}
if (gpr.R(rs).IsSimpleReg()) {
destReg = gpr.R(rs).GetSimpleReg();
} else {
MOV(32, R(EAX), gpr.R(rs));
}
FlushAll();
} else {
gpr.MapReg(rs, true, false);
MOV(32, MIPSSTATE_VAR(savedPC), gpr.R(rs));
if (andLink)
gpr.SetImm(rd, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
MOV(32, R(EAX), MIPSSTATE_VAR(savedPC));
FlushAll();
}
switch (op & 0x3f) {
case 8:
break;
case 9:
break;
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
CONDITIONAL_LOG_EXIT_EAX();
WriteExitDestInReg(destReg);
js.compiling = false;
}
void Jit::Comp_Syscall(MIPSOpcode op)
{
if (op.encoding == 0x03FFFFcc) {
WARN_LOG(Log::JIT, "Encountered bad syscall instruction at %08x (%08x)", js.compilerPC, op.encoding);
}
if (!g_Config.bSkipDeadbeefFilling)
{
gpr.DiscardR(MIPS_REG_COMPILER_SCRATCH);
gpr.DiscardR(MIPS_REG_T4);
gpr.DiscardR(MIPS_REG_T5);
gpr.DiscardR(MIPS_REG_T6);
gpr.DiscardR(MIPS_REG_T7);
gpr.DiscardR(MIPS_REG_T8);
gpr.DiscardR(MIPS_REG_T9);
gpr.DiscardR(MIPS_REG_HI);
gpr.DiscardR(MIPS_REG_LO);
}
FlushAll();
const int offset = js.inDelaySlot ? -1 : 0;
WriteDowncount(offset);
RestoreRoundingMode();
js.downcountAmount = -offset;
if (!js.inDelaySlot) {
MOV(32, MIPSSTATE_VAR(pc), Imm32(GetCompilerPC() + 4));
}
#ifdef USE_PROFILER
ABI_CallFunctionC(&CallSyscall, op.encoding);
#else
void *quickFunc = GetQuickSyscallFunc(op);
if (quickFunc)
ABI_CallFunctionP(quickFunc, (void *)GetSyscallFuncPointer(op));
else
ABI_CallFunctionC(&CallSyscall, op.encoding);
#endif
ApplyRoundingMode();
WriteSyscallExit();
js.compiling = false;
}
void Jit::Comp_Break(MIPSOpcode op)
{
Comp_Generic(op);
WriteSyscallExit();
js.compiling = false;
}
}
#endif