Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
iperov
GitHub Repository: iperov/deepfacelab
Path: blob/master/core/leras/layers/AdaIN.py
628 views
1
from core.leras import nn
2
tf = nn.tf
3
4
class AdaIN(nn.LayerBase):
5
"""
6
"""
7
def __init__(self, in_ch, mlp_ch, kernel_initializer=None, dtype=None, **kwargs):
8
self.in_ch = in_ch
9
self.mlp_ch = mlp_ch
10
self.kernel_initializer = kernel_initializer
11
12
if dtype is None:
13
dtype = nn.floatx
14
self.dtype = dtype
15
16
super().__init__(**kwargs)
17
18
def build_weights(self):
19
kernel_initializer = self.kernel_initializer
20
if kernel_initializer is None:
21
kernel_initializer = tf.initializers.he_normal()
22
23
self.weight1 = tf.get_variable("weight1", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer)
24
self.bias1 = tf.get_variable("bias1", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros())
25
self.weight2 = tf.get_variable("weight2", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer)
26
self.bias2 = tf.get_variable("bias2", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros())
27
28
def get_weights(self):
29
return [self.weight1, self.bias1, self.weight2, self.bias2]
30
31
def forward(self, inputs):
32
x, mlp = inputs
33
34
gamma = tf.matmul(mlp, self.weight1)
35
gamma = tf.add(gamma, tf.reshape(self.bias1, (1,self.in_ch) ) )
36
37
beta = tf.matmul(mlp, self.weight2)
38
beta = tf.add(beta, tf.reshape(self.bias2, (1,self.in_ch) ) )
39
40
41
if nn.data_format == "NHWC":
42
shape = (-1,1,1,self.in_ch)
43
else:
44
shape = (-1,self.in_ch,1,1)
45
46
x_mean = tf.reduce_mean(x, axis=nn.conv2d_spatial_axes, keepdims=True )
47
x_std = tf.math.reduce_std(x, axis=nn.conv2d_spatial_axes, keepdims=True ) + 1e-5
48
49
x = (x - x_mean) / x_std
50
x *= tf.reshape(gamma, shape)
51
52
x += tf.reshape(beta, shape)
53
54
return x
55
56
nn.AdaIN = AdaIN
57