Path: blob/master/core/leras/layers/DepthwiseConv2D.py
628 views
import numpy as np1from core.leras import nn2tf = nn.tf34class DepthwiseConv2D(nn.LayerBase):5"""6default kernel_initializer - CA7use_wscale bool enables equalized learning rate, if kernel_initializer is None, it will be forced to random_normal8"""9def __init__(self, in_ch, kernel_size, strides=1, padding='SAME', depth_multiplier=1, dilations=1, use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):10if not isinstance(strides, int):11raise ValueError ("strides must be an int type")12if not isinstance(dilations, int):13raise ValueError ("dilations must be an int type")14kernel_size = int(kernel_size)1516if dtype is None:17dtype = nn.floatx1819if isinstance(padding, str):20if padding == "SAME":21padding = ( (kernel_size - 1) * dilations + 1 ) // 222elif padding == "VALID":23padding = 024else:25raise ValueError ("Wrong padding type. Should be VALID SAME or INT or 4x INTs")2627if isinstance(padding, int):28if padding != 0:29if nn.data_format == "NHWC":30padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ]31else:32padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ]33else:34padding = None3536if nn.data_format == "NHWC":37strides = [1,strides,strides,1]38else:39strides = [1,1,strides,strides]4041if nn.data_format == "NHWC":42dilations = [1,dilations,dilations,1]43else:44dilations = [1,1,dilations,dilations]4546self.in_ch = in_ch47self.depth_multiplier = depth_multiplier48self.kernel_size = kernel_size49self.strides = strides50self.padding = padding51self.dilations = dilations52self.use_bias = use_bias53self.use_wscale = use_wscale54self.kernel_initializer = kernel_initializer55self.bias_initializer = bias_initializer56self.trainable = trainable57self.dtype = dtype58super().__init__(**kwargs)5960def build_weights(self):61kernel_initializer = self.kernel_initializer62if self.use_wscale:63gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)64fan_in = self.kernel_size*self.kernel_size*self.in_ch65he_std = gain / np.sqrt(fan_in)66self.wscale = tf.constant(he_std, dtype=self.dtype )67if kernel_initializer is None:68kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)6970#if kernel_initializer is None:71# kernel_initializer = nn.initializers.ca()7273self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )7475if self.use_bias:76bias_initializer = self.bias_initializer77if bias_initializer is None:78bias_initializer = tf.initializers.zeros(dtype=self.dtype)7980self.bias = tf.get_variable("bias", (self.in_ch*self.depth_multiplier,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )8182def get_weights(self):83weights = [self.weight]84if self.use_bias:85weights += [self.bias]86return weights8788def forward(self, x):89weight = self.weight90if self.use_wscale:91weight = weight * self.wscale9293if self.padding is not None:94x = tf.pad (x, self.padding, mode='CONSTANT')9596x = tf.nn.depthwise_conv2d(x, weight, self.strides, 'VALID', data_format=nn.data_format)97if self.use_bias:98if nn.data_format == "NHWC":99bias = tf.reshape (self.bias, (1,1,1,self.in_ch*self.depth_multiplier) )100else:101bias = tf.reshape (self.bias, (1,self.in_ch*self.depth_multiplier,1,1) )102x = tf.add(x, bias)103return x104105def __str__(self):106r = f"{self.__class__.__name__} : in_ch:{self.in_ch} depth_multiplier:{self.depth_multiplier} "107return r108109nn.DepthwiseConv2D = DepthwiseConv2D110111