Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
iperov
GitHub Repository: iperov/deepfacelab
Path: blob/master/core/leras/layers/TanhPolar.py
628 views
1
import numpy as np
2
from core.leras import nn
3
tf = nn.tf
4
5
class TanhPolar(nn.LayerBase):
6
"""
7
RoI Tanh-polar Transformer Network for Face Parsing in the Wild
8
https://github.com/hhj1897/roi_tanh_warping
9
"""
10
11
def __init__(self, width, height, angular_offset_deg=270, **kwargs):
12
self.width = width
13
self.height = height
14
15
warp_gridx, warp_gridy = TanhPolar._get_tanh_polar_warp_grids(width,height,angular_offset_deg=angular_offset_deg)
16
restore_gridx, restore_gridy = TanhPolar._get_tanh_polar_restore_grids(width,height,angular_offset_deg=angular_offset_deg)
17
18
self.warp_gridx_t = tf.constant(warp_gridx[None, ...])
19
self.warp_gridy_t = tf.constant(warp_gridy[None, ...])
20
self.restore_gridx_t = tf.constant(restore_gridx[None, ...])
21
self.restore_gridy_t = tf.constant(restore_gridy[None, ...])
22
23
super().__init__(**kwargs)
24
25
def warp(self, inp_t):
26
batch_t = tf.shape(inp_t)[0]
27
warp_gridx_t = tf.tile(self.warp_gridx_t, (batch_t,1,1) )
28
warp_gridy_t = tf.tile(self.warp_gridy_t, (batch_t,1,1) )
29
30
if nn.data_format == "NCHW":
31
inp_t = tf.transpose(inp_t,(0,2,3,1))
32
33
out_t = nn.bilinear_sampler(inp_t, warp_gridx_t, warp_gridy_t)
34
35
if nn.data_format == "NCHW":
36
out_t = tf.transpose(out_t,(0,3,1,2))
37
38
return out_t
39
40
def restore(self, inp_t):
41
batch_t = tf.shape(inp_t)[0]
42
restore_gridx_t = tf.tile(self.restore_gridx_t, (batch_t,1,1) )
43
restore_gridy_t = tf.tile(self.restore_gridy_t, (batch_t,1,1) )
44
45
if nn.data_format == "NCHW":
46
inp_t = tf.transpose(inp_t,(0,2,3,1))
47
48
inp_t = tf.pad(inp_t, [(0,0), (1, 1), (1, 0), (0, 0)], "SYMMETRIC")
49
50
out_t = nn.bilinear_sampler(inp_t, restore_gridx_t, restore_gridy_t)
51
52
if nn.data_format == "NCHW":
53
out_t = tf.transpose(out_t,(0,3,1,2))
54
55
return out_t
56
57
@staticmethod
58
def _get_tanh_polar_warp_grids(W,H,angular_offset_deg):
59
angular_offset_pi = angular_offset_deg * np.pi / 180.0
60
61
roi_center = np.array([ W//2, H//2], np.float32 )
62
roi_radii = np.array([W, H], np.float32 ) / np.pi ** 0.5
63
cos_offset, sin_offset = np.cos(angular_offset_pi), np.sin(angular_offset_pi)
64
normalised_dest_indices = np.stack(np.meshgrid(np.arange(0.0, 1.0, 1.0 / W),np.arange(0.0, 2.0 * np.pi, 2.0 * np.pi / H)), axis=-1)
65
radii = normalised_dest_indices[..., 0]
66
orientation_x = np.cos(normalised_dest_indices[..., 1])
67
orientation_y = np.sin(normalised_dest_indices[..., 1])
68
69
src_radii = np.arctanh(radii) * (roi_radii[0] * roi_radii[1] / np.sqrt(roi_radii[1] ** 2 * orientation_x ** 2 + roi_radii[0] ** 2 * orientation_y ** 2))
70
src_x_indices = src_radii * orientation_x
71
src_y_indices = src_radii * orientation_y
72
src_x_indices, src_y_indices = (roi_center[0] + cos_offset * src_x_indices - sin_offset * src_y_indices,
73
roi_center[1] + cos_offset * src_y_indices + sin_offset * src_x_indices)
74
75
return src_x_indices.astype(np.float32), src_y_indices.astype(np.float32)
76
77
@staticmethod
78
def _get_tanh_polar_restore_grids(W,H,angular_offset_deg):
79
angular_offset_pi = angular_offset_deg * np.pi / 180.0
80
81
roi_center = np.array([ W//2, H//2], np.float32 )
82
roi_radii = np.array([W, H], np.float32 ) / np.pi ** 0.5
83
cos_offset, sin_offset = np.cos(angular_offset_pi), np.sin(angular_offset_pi)
84
85
dest_indices = np.stack(np.meshgrid(np.arange(W), np.arange(H)), axis=-1).astype(float)
86
normalised_dest_indices = np.matmul(dest_indices - roi_center, np.array([[cos_offset, -sin_offset],
87
[sin_offset, cos_offset]]))
88
radii = np.linalg.norm(normalised_dest_indices, axis=-1)
89
normalised_dest_indices[..., 0] /= np.clip(radii, 1e-9, None)
90
normalised_dest_indices[..., 1] /= np.clip(radii, 1e-9, None)
91
radii *= np.sqrt(roi_radii[1] ** 2 * normalised_dest_indices[..., 0] ** 2 +
92
roi_radii[0] ** 2 * normalised_dest_indices[..., 1] ** 2) / roi_radii[0] / roi_radii[1]
93
94
src_radii = np.tanh(radii)
95
96
97
src_x_indices = src_radii * W + 1.0
98
src_y_indices = np.mod((np.arctan2(normalised_dest_indices[..., 1], normalised_dest_indices[..., 0]) /
99
2.0 / np.pi) * H, H) + 1.0
100
101
return src_x_indices.astype(np.float32), src_y_indices.astype(np.float32)
102
103
104
nn.TanhPolar = TanhPolar
105