Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
iperov
GitHub Repository: iperov/deepfacelab
Path: blob/master/samplelib/SampleGeneratorFaceXSeg.py
628 views
1
import multiprocessing
2
import pickle
3
import time
4
import traceback
5
from enum import IntEnum
6
7
import cv2
8
import numpy as np
9
from pathlib import Path
10
from core import imagelib, mplib, pathex
11
from core.imagelib import sd
12
from core.cv2ex import *
13
from core.interact import interact as io
14
from core.joblib import Subprocessor, SubprocessGenerator, ThisThreadGenerator
15
from facelib import LandmarksProcessor
16
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType)
17
18
class SampleGeneratorFaceXSeg(SampleGeneratorBase):
19
def __init__ (self, paths, debug=False, batch_size=1, resolution=256, face_type=None,
20
generators_count=4, data_format="NHWC",
21
**kwargs):
22
23
super().__init__(debug, batch_size)
24
self.initialized = False
25
26
samples = sum([ SampleLoader.load (SampleType.FACE, path) for path in paths ] )
27
seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples).run()
28
29
if len(seg_sample_idxs) == 0:
30
seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples, count_xseg_mask=True).run()
31
if len(seg_sample_idxs) == 0:
32
raise Exception(f"No segmented faces found.")
33
else:
34
io.log_info(f"Using {len(seg_sample_idxs)} xseg labeled samples.")
35
else:
36
io.log_info(f"Using {len(seg_sample_idxs)} segmented samples.")
37
38
if self.debug:
39
self.generators_count = 1
40
else:
41
self.generators_count = max(1, generators_count)
42
43
args = (samples, seg_sample_idxs, resolution, face_type, data_format)
44
if self.debug:
45
self.generators = [ThisThreadGenerator ( self.batch_func, args )]
46
else:
47
self.generators = [SubprocessGenerator ( self.batch_func, args, start_now=False ) for i in range(self.generators_count) ]
48
49
SubprocessGenerator.start_in_parallel( self.generators )
50
51
self.generator_counter = -1
52
53
self.initialized = True
54
55
#overridable
56
def is_initialized(self):
57
return self.initialized
58
59
def __iter__(self):
60
return self
61
62
def __next__(self):
63
self.generator_counter += 1
64
generator = self.generators[self.generator_counter % len(self.generators) ]
65
return next(generator)
66
67
def batch_func(self, param ):
68
samples, seg_sample_idxs, resolution, face_type, data_format = param
69
70
shuffle_idxs = []
71
bg_shuffle_idxs = []
72
73
random_flip = True
74
rotation_range=[-10,10]
75
scale_range=[-0.05, 0.05]
76
tx_range=[-0.05, 0.05]
77
ty_range=[-0.05, 0.05]
78
79
random_bilinear_resize_chance, random_bilinear_resize_max_size_per = 25,75
80
sharpen_chance, sharpen_kernel_max_size = 25, 5
81
motion_blur_chance, motion_blur_mb_max_size = 25, 5
82
gaussian_blur_chance, gaussian_blur_kernel_max_size = 25, 5
83
random_jpeg_compress_chance = 25
84
85
def gen_img_mask(sample):
86
img = sample.load_bgr()
87
h,w,c = img.shape
88
89
if sample.seg_ie_polys.has_polys():
90
mask = np.zeros ((h,w,1), dtype=np.float32)
91
sample.seg_ie_polys.overlay_mask(mask)
92
elif sample.has_xseg_mask():
93
mask = sample.get_xseg_mask()
94
mask[mask < 0.5] = 0.0
95
mask[mask >= 0.5] = 1.0
96
else:
97
raise Exception(f'no mask in sample {sample.filename}')
98
99
if face_type == sample.face_type:
100
if w != resolution:
101
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 )
102
mask = cv2.resize( mask, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 )
103
else:
104
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, face_type)
105
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 )
106
mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 )
107
108
if len(mask.shape) == 2:
109
mask = mask[...,None]
110
return img, mask
111
112
bs = self.batch_size
113
while True:
114
batches = [ [], [] ]
115
116
n_batch = 0
117
while n_batch < bs:
118
try:
119
if len(shuffle_idxs) == 0:
120
shuffle_idxs = seg_sample_idxs.copy()
121
np.random.shuffle(shuffle_idxs)
122
sample = samples[shuffle_idxs.pop()]
123
img, mask = gen_img_mask(sample)
124
125
if np.random.randint(2) == 0:
126
if len(bg_shuffle_idxs) == 0:
127
bg_shuffle_idxs = seg_sample_idxs.copy()
128
np.random.shuffle(bg_shuffle_idxs)
129
bg_sample = samples[bg_shuffle_idxs.pop()]
130
131
bg_img, bg_mask = gen_img_mask(bg_sample)
132
133
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[-0.10, 0.10], tx_range=[-0.10, 0.10], ty_range=[-0.10, 0.10] )
134
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
135
bg_mask = imagelib.warp_by_params (bg_wp, bg_mask, can_warp=False, can_transform=True, can_flip=True, border_replicate=False)
136
bg_img = bg_img*(1-bg_mask)
137
if np.random.randint(2) == 0:
138
bg_img = imagelib.apply_random_hsv_shift(bg_img)
139
else:
140
bg_img = imagelib.apply_random_rgb_levels(bg_img)
141
142
c_mask = 1.0 - (1-bg_mask) * (1-mask)
143
rnd = 0.15 + np.random.uniform()*0.85
144
img = img*(c_mask) + img*(1-c_mask)*rnd + bg_img*(1-c_mask)*(1-rnd)
145
146
warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range )
147
img = imagelib.warp_by_params (warp_params, img, can_warp=True, can_transform=True, can_flip=True, border_replicate=True)
148
mask = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False)
149
150
img = np.clip(img.astype(np.float32), 0, 1)
151
mask[mask < 0.5] = 0.0
152
mask[mask >= 0.5] = 1.0
153
mask = np.clip(mask, 0, 1)
154
155
if np.random.randint(2) == 0:
156
# random face flare
157
krn = np.random.randint( resolution//4, resolution )
158
krn = krn - krn % 2 + 1
159
img = img + cv2.GaussianBlur(img*mask, (krn,krn), 0)
160
161
if np.random.randint(2) == 0:
162
# random bg flare
163
krn = np.random.randint( resolution//4, resolution )
164
krn = krn - krn % 2 + 1
165
img = img + cv2.GaussianBlur(img*(1-mask), (krn,krn), 0)
166
167
if np.random.randint(2) == 0:
168
img = imagelib.apply_random_hsv_shift(img, mask=sd.random_circle_faded ([resolution,resolution]))
169
else:
170
img = imagelib.apply_random_rgb_levels(img, mask=sd.random_circle_faded ([resolution,resolution]))
171
172
if np.random.randint(2) == 0:
173
img = imagelib.apply_random_sharpen( img, sharpen_chance, sharpen_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
174
else:
175
img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
176
img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
177
178
if np.random.randint(2) == 0:
179
img = imagelib.apply_random_nearest_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
180
else:
181
img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
182
img = np.clip(img, 0, 1)
183
184
img = imagelib.apply_random_jpeg_compress( img, random_jpeg_compress_chance, mask=sd.random_circle_faded ([resolution,resolution]))
185
186
if data_format == "NCHW":
187
img = np.transpose(img, (2,0,1) )
188
mask = np.transpose(mask, (2,0,1) )
189
190
batches[0].append ( img )
191
batches[1].append ( mask )
192
193
n_batch += 1
194
except:
195
io.log_err ( traceback.format_exc() )
196
197
yield [ np.array(batch) for batch in batches]
198
199
class SegmentedSampleFilterSubprocessor(Subprocessor):
200
#override
201
def __init__(self, samples, count_xseg_mask=False ):
202
self.samples = samples
203
self.samples_len = len(self.samples)
204
self.count_xseg_mask = count_xseg_mask
205
206
self.idxs = [*range(self.samples_len)]
207
self.result = []
208
super().__init__('SegmentedSampleFilterSubprocessor', SegmentedSampleFilterSubprocessor.Cli, 60)
209
210
#override
211
def process_info_generator(self):
212
for i in range(multiprocessing.cpu_count()):
213
yield 'CPU%d' % (i), {}, {'samples':self.samples, 'count_xseg_mask':self.count_xseg_mask}
214
215
#override
216
def on_clients_initialized(self):
217
io.progress_bar ("Filtering", self.samples_len)
218
219
#override
220
def on_clients_finalized(self):
221
io.progress_bar_close()
222
223
#override
224
def get_data(self, host_dict):
225
if len (self.idxs) > 0:
226
return self.idxs.pop(0)
227
228
return None
229
230
#override
231
def on_data_return (self, host_dict, data):
232
self.idxs.insert(0, data)
233
234
#override
235
def on_result (self, host_dict, data, result):
236
idx, is_ok = result
237
if is_ok:
238
self.result.append(idx)
239
io.progress_bar_inc(1)
240
def get_result(self):
241
return self.result
242
243
class Cli(Subprocessor.Cli):
244
#overridable optional
245
def on_initialize(self, client_dict):
246
self.samples = client_dict['samples']
247
self.count_xseg_mask = client_dict['count_xseg_mask']
248
249
def process_data(self, idx):
250
if self.count_xseg_mask:
251
return idx, self.samples[idx].has_xseg_mask()
252
else:
253
return idx, self.samples[idx].seg_ie_polys.get_pts_count() != 0
254
255
"""
256
bg_path = None
257
for path in paths:
258
bg_path = Path(path) / 'backgrounds'
259
if bg_path.exists():
260
261
break
262
if bg_path is None:
263
io.log_info(f'Random backgrounds will not be used. Place no face jpg images to aligned\backgrounds folder. ')
264
bg_pathes = None
265
else:
266
bg_pathes = pathex.get_image_paths(bg_path, image_extensions=['.jpg'], return_Path_class=True)
267
io.log_info(f'Using {len(bg_pathes)} random backgrounds from {bg_path}')
268
269
if bg_pathes is not None:
270
bg_path = bg_pathes[ np.random.randint(len(bg_pathes)) ]
271
272
bg_img = cv2_imread(bg_path)
273
if bg_img is not None:
274
bg_img = bg_img.astype(np.float32) / 255.0
275
bg_img = imagelib.normalize_channels(bg_img, 3)
276
277
bg_img = imagelib.random_crop(bg_img, resolution, resolution)
278
bg_img = cv2.resize(bg_img, (resolution, resolution), interpolation=cv2.INTER_LINEAR)
279
280
if np.random.randint(2) == 0:
281
bg_img = imagelib.apply_random_hsv_shift(bg_img)
282
else:
283
bg_img = imagelib.apply_random_rgb_levels(bg_img)
284
285
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[0,0], tx_range=[0,0], ty_range=[0,0])
286
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
287
288
bg = img*(1-mask)
289
fg = img*mask
290
291
c_mask = sd.random_circle_faded ([resolution,resolution])
292
bg = ( bg_img*c_mask + bg*(1-c_mask) )*(1-mask)
293
294
img = fg+bg
295
296
else:
297
"""
298