Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/audio/ipynb/ctc_asr.ipynb
3508 views
Kernel: Python 3

Automatic Speech Recognition using CTC

Authors: Mohamed Reda Bouadjenek and Ngoc Dung Huynh
Date created: 2021/09/26
Last modified: 2021/09/26
Description: Training a CTC-based model for automatic speech recognition.

Introduction

Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech to text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields.

This demonstration shows how to combine a 2D CNN, RNN and a Connectionist Temporal Classification (CTC) loss to build an ASR. CTC is an algorithm used to train deep neural networks in speech recognition, handwriting recognition and other sequence problems. CTC is used when we don’t know how the input aligns with the output (how the characters in the transcript align to the audio). The model we create is similar to DeepSpeech2.

We will use the LJSpeech dataset from the LibriVox project. It consists of short audio clips of a single speaker reading passages from 7 non-fiction books.

We will evaluate the quality of the model using Word Error Rate (WER). WER is obtained by adding up the substitutions, insertions, and deletions that occur in a sequence of recognized words. Divide that number by the total number of words originally spoken. The result is the WER. To get the WER score you need to install the jiwer package. You can use the following command line:

pip install jiwer

References:

Setup

import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt from IPython import display from jiwer import wer

Load the LJSpeech Dataset

Let's download the LJSpeech Dataset. The dataset contains 13,100 audio files as wav files in the /wavs/ folder. The label (transcript) for each audio file is a string given in the metadata.csv file. The fields are:

  • ID: this is the name of the corresponding .wav file

  • Transcription: words spoken by the reader (UTF-8)

  • Normalized transcription: transcription with numbers, ordinals, and monetary units expanded into full words (UTF-8).

For this demo we will use on the "Normalized transcription" field.

Each audio file is a single-channel 16-bit PCM WAV with a sample rate of 22,050 Hz.

data_url = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" data_path = keras.utils.get_file("LJSpeech-1.1", data_url, untar=True) wavs_path = data_path + "/wavs/" metadata_path = data_path + "/metadata.csv" # Read metadata file and parse it metadata_df = pd.read_csv(metadata_path, sep="|", header=None, quoting=3) metadata_df.columns = ["file_name", "transcription", "normalized_transcription"] metadata_df = metadata_df[["file_name", "normalized_transcription"]] metadata_df = metadata_df.sample(frac=1).reset_index(drop=True) metadata_df.head(3)

We now split the data into training and validation set.

split = int(len(metadata_df) * 0.90) df_train = metadata_df[:split] df_val = metadata_df[split:] print(f"Size of the training set: {len(df_train)}") print(f"Size of the training set: {len(df_val)}")

Preprocessing

We first prepare the vocabulary to be used.

# The set of characters accepted in the transcription. characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "] # Mapping characters to integers char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="") # Mapping integers back to original characters num_to_char = keras.layers.StringLookup( vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True ) print( f"The vocabulary is: {char_to_num.get_vocabulary()} " f"(size ={char_to_num.vocabulary_size()})" )

Next, we create the function that describes the transformation that we apply to each element of our dataset.

# An integer scalar Tensor. The window length in samples. frame_length = 256 # An integer scalar Tensor. The number of samples to step. frame_step = 160 # An integer scalar Tensor. The size of the FFT to apply. # If not provided, uses the smallest power of 2 enclosing frame_length. fft_length = 384 def encode_single_sample(wav_file, label): ########################################### ## Process the Audio ########################################## # 1. Read wav file file = tf.io.read_file(wavs_path + wav_file + ".wav") # 2. Decode the wav file audio, _ = tf.audio.decode_wav(file) audio = tf.squeeze(audio, axis=-1) # 3. Change type to float audio = tf.cast(audio, tf.float32) # 4. Get the spectrogram spectrogram = tf.signal.stft( audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length ) # 5. We only need the magnitude, which can be derived by applying tf.abs spectrogram = tf.abs(spectrogram) spectrogram = tf.math.pow(spectrogram, 0.5) # 6. normalisation means = tf.math.reduce_mean(spectrogram, 1, keepdims=True) stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True) spectrogram = (spectrogram - means) / (stddevs + 1e-10) ########################################### ## Process the label ########################################## # 7. Convert label to Lower case label = tf.strings.lower(label) # 8. Split the label label = tf.strings.unicode_split(label, input_encoding="UTF-8") # 9. Map the characters in label to numbers label = char_to_num(label) # 10. Return a dict as our model is expecting two inputs return spectrogram, label

Creating Dataset objects

We create a tf.data.Dataset object that yields the transformed elements, in the same order as they appeared in the input.

batch_size = 32 # Define the training dataset train_dataset = tf.data.Dataset.from_tensor_slices( (list(df_train["file_name"]), list(df_train["normalized_transcription"])) ) train_dataset = ( train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .padded_batch(batch_size) .prefetch(buffer_size=tf.data.AUTOTUNE) ) # Define the validation dataset validation_dataset = tf.data.Dataset.from_tensor_slices( (list(df_val["file_name"]), list(df_val["normalized_transcription"])) ) validation_dataset = ( validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .padded_batch(batch_size) .prefetch(buffer_size=tf.data.AUTOTUNE) )

Visualize the data

Let's visualize an example in our dataset, including the audio clip, the spectrogram and the corresponding label.

fig = plt.figure(figsize=(8, 5)) for batch in train_dataset.take(1): spectrogram = batch[0][0].numpy() spectrogram = np.array([np.trim_zeros(x) for x in np.transpose(spectrogram)]) label = batch[1][0] # Spectrogram label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") ax = plt.subplot(2, 1, 1) ax.imshow(spectrogram, vmax=1) ax.set_title(label) ax.axis("off") # Wav file = tf.io.read_file(wavs_path + list(df_train["file_name"])[0] + ".wav") audio, _ = tf.audio.decode_wav(file) audio = audio.numpy() ax = plt.subplot(2, 1, 2) plt.plot(audio) ax.set_title("Signal Wave") ax.set_xlim(0, len(audio)) display.display(display.Audio(np.transpose(audio), rate=16000)) plt.show()

Model

We first define the CTC Loss function.

def CTCLoss(y_true, y_pred): # Compute the training-time loss value batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64") input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64") label_length = tf.cast(tf.shape(y_true)[1], dtype="int64") input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64") label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64") loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length) return loss

We now define our model. We will define a model similar to DeepSpeech2.

def build_model(input_dim, output_dim, rnn_layers=5, rnn_units=128): """Model similar to DeepSpeech2.""" # Model's input input_spectrogram = layers.Input((None, input_dim), name="input") # Expand the dimension to use 2D CNN. x = layers.Reshape((-1, input_dim, 1), name="expand_dim")(input_spectrogram) # Convolution layer 1 x = layers.Conv2D( filters=32, kernel_size=[11, 41], strides=[2, 2], padding="same", use_bias=False, name="conv_1", )(x) x = layers.BatchNormalization(name="conv_1_bn")(x) x = layers.ReLU(name="conv_1_relu")(x) # Convolution layer 2 x = layers.Conv2D( filters=32, kernel_size=[11, 21], strides=[1, 2], padding="same", use_bias=False, name="conv_2", )(x) x = layers.BatchNormalization(name="conv_2_bn")(x) x = layers.ReLU(name="conv_2_relu")(x) # Reshape the resulted volume to feed the RNNs layers x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x) # RNN layers for i in range(1, rnn_layers + 1): recurrent = layers.GRU( units=rnn_units, activation="tanh", recurrent_activation="sigmoid", use_bias=True, return_sequences=True, reset_after=True, name=f"gru_{i}", ) x = layers.Bidirectional( recurrent, name=f"bidirectional_{i}", merge_mode="concat" )(x) if i < rnn_layers: x = layers.Dropout(rate=0.5)(x) # Dense layer x = layers.Dense(units=rnn_units * 2, name="dense_1")(x) x = layers.ReLU(name="dense_1_relu")(x) x = layers.Dropout(rate=0.5)(x) # Classification layer output = layers.Dense(units=output_dim + 1, activation="softmax")(x) # Model model = keras.Model(input_spectrogram, output, name="DeepSpeech_2") # Optimizer opt = keras.optimizers.Adam(learning_rate=1e-4) # Compile the model and return model.compile(optimizer=opt, loss=CTCLoss) return model # Get the model model = build_model( input_dim=fft_length // 2 + 1, output_dim=char_to_num.vocabulary_size(), rnn_units=512, ) model.summary(line_length=110)

Training and Evaluating

# A utility function to decode the output of the network def decode_batch_predictions(pred): input_len = np.ones(pred.shape[0]) * pred.shape[1] # Use greedy search. For complex tasks, you can use beam search results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0] # Iterate over the results and get back the text output_text = [] for result in results: result = tf.strings.reduce_join(num_to_char(result)).numpy().decode("utf-8") output_text.append(result) return output_text # A callback class to output a few transcriptions during training class CallbackEval(keras.callbacks.Callback): """Displays a batch of outputs after every epoch.""" def __init__(self, dataset): super().__init__() self.dataset = dataset def on_epoch_end(self, epoch: int, logs=None): predictions = [] targets = [] for batch in self.dataset: X, y = batch batch_predictions = model.predict(X) batch_predictions = decode_batch_predictions(batch_predictions) predictions.extend(batch_predictions) for label in y: label = ( tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") ) targets.append(label) wer_score = wer(targets, predictions) print("-" * 100) print(f"Word Error Rate: {wer_score:.4f}") print("-" * 100) for i in np.random.randint(0, len(predictions), 2): print(f"Target : {targets[i]}") print(f"Prediction: {predictions[i]}") print("-" * 100)

Let's start the training process.

# Define the number of epochs. epochs = 1 # Callback function to check transcription on the val set. validation_callback = CallbackEval(validation_dataset) # Train the model history = model.fit( train_dataset, validation_data=validation_dataset, epochs=epochs, callbacks=[validation_callback], )

Inference

# Let's check results on more validation samples predictions = [] targets = [] for batch in validation_dataset: X, y = batch batch_predictions = model.predict(X) batch_predictions = decode_batch_predictions(batch_predictions) predictions.extend(batch_predictions) for label in y: label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") targets.append(label) wer_score = wer(targets, predictions) print("-" * 100) print(f"Word Error Rate: {wer_score:.4f}") print("-" * 100) for i in np.random.randint(0, len(predictions), 5): print(f"Target : {targets[i]}") print(f"Prediction: {predictions[i]}") print("-" * 100)

Conclusion

In practice, you should train for around 50 epochs or more. Each epoch takes approximately 5-6mn using a GeForce RTX 2080 Ti GPU. The model we trained at 50 epochs has a Word Error Rate (WER) ≈ 16% to 17%.

Some of the transcriptions around epoch 50:

Audio file: LJ017-0009.wav

- Target : sir thomas overbury was undoubtedly poisoned by lord rochester in the reign of james the first - Prediction: cer thomas overbery was undoubtedly poisoned by lordrochester in the reign of james the first

Audio file: LJ003-0340.wav

- Target : the committee does not seem to have yet understood that newgate could be only and properly replaced - Prediction: the committee does not seem to have yet understood that newgate could be only and proberly replace

Audio file: LJ011-0136.wav

- Target : still no sentence of death was carried out for the offense and in eighteen thirtytwo - Prediction: still no sentence of death was carried out for the offense and in eighteen thirtytwo

Example available on HuggingFace.

Trained ModelDemo
Generic badgeGeneric badge