Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/audio/ipynb/stft.ipynb
3508 views
Kernel: Python 3

Audio Classification with the STFTSpectrogram layer

Author: Mostafa M. Amin
Date created: 2024/10/04
Last modified: 2024/10/04
Description: Introducing the STFTSpectrogram layer to extract spectrograms for audio classification.

Introduction

Preprocessing audio as spectrograms is an essential step in the vast majority of audio-based applications. Spectrograms represent the frequency content of a signal over time, are widely used for this purpose. In this tutorial, we'll demonstrate how to use the STFTSpectrogram layer in Keras to convert raw audio waveforms into spectrograms within the model. We'll then feed these spectrograms into an LSTM network followed by Dense layers to perform audio classification on the Speech Commands dataset.

We will:

  • Load the ESC-10 dataset.

  • Preprocess the raw audio waveforms and generate spectrograms using STFTSpectrogram.

  • Build two models, one using spectrograms as 1D signals and the other is using as images (2D signals) with a pretrained image model.

  • Train and evaluate the models.

Setup

Importing the necessary libraries

import os os.environ["KERAS_BACKEND"] = "jax" import keras import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.io.wavfile from keras import layers from scipy.signal import resample keras.utils.set_random_seed(41)

Define some variables

BASE_DATA_DIR = "./datasets/esc-50_extracted/ESC-50-master/" BATCH_SIZE = 16 NUM_CLASSES = 10 EPOCHS = 200 SAMPLE_RATE = 16000

Download and Preprocess the ESC-10 Dataset

We'll use the Dataset for Environmental Sound Classification dataset (ESC-10). This dataset consists of five-second .wav files of environmental sounds.

Download and Extract the dataset

keras.utils.get_file( "esc-50.zip", "https://github.com/karoldvl/ESC-50/archive/master.zip", cache_dir="./", cache_subdir="datasets", extract=True, )

Read the CSV file

pd_data = pd.read_csv(os.path.join(BASE_DATA_DIR, "meta", "esc50.csv")) # filter ESC-50 to ESC-10 and reassign the targets pd_data = pd_data[pd_data["esc10"]] targets = sorted(pd_data["target"].unique().tolist()) assert len(targets) == NUM_CLASSES old_target_to_new_target = {old: new for new, old in enumerate(targets)} pd_data["target"] = pd_data["target"].map(lambda t: old_target_to_new_target[t]) pd_data

Define functions to read and preprocess the WAV files

def read_wav_file(path, target_sr=SAMPLE_RATE): sr, wav = scipy.io.wavfile.read(os.path.join(BASE_DATA_DIR, "audio", path)) wav = wav.astype(np.float32) / 32768.0 # normalize to [-1, 1] num_samples = int(len(wav) * target_sr / sr) # resample to 16 kHz wav = resample(wav, num_samples) return wav[:, None] # Add a channel dimension (of size 1)

Create a function that uses the STFTSpectrogram to compute a spectrogram, then plots it.

def plot_single_spectrogram(sample_wav_data): spectrogram = layers.STFTSpectrogram( mode="log", frame_length=SAMPLE_RATE * 20 // 1000, frame_step=SAMPLE_RATE * 5 // 1000, fft_length=1024, trainable=False, )(sample_wav_data[None, ...])[0, ...] # Plot the spectrogram plt.imshow(spectrogram.T, origin="lower") plt.title("Single Channel Spectrogram") plt.xlabel("Time") plt.ylabel("Frequency") plt.show()

Create a function that uses the STFTSpectrogram to compute three spectrograms with multiple bandwidths, then aligns them as an image with different channels, to get a multi-bandwith spectrogram, then plots the spectrogram.

def plot_multi_bandwidth_spectrogram(sample_wav_data): # All spectrograms must use the same `fft_length`, `frame_step`, and # `padding="same"` in order to produce spectrograms with identical shapes, # hence aligning them together. `expand_dims` ensures that the shapes are # compatible with image models. spectrograms = np.concatenate( [ layers.STFTSpectrogram( mode="log", frame_length=SAMPLE_RATE * x // 1000, frame_step=SAMPLE_RATE * 5 // 1000, fft_length=1024, padding="same", expand_dims=True, )(sample_wav_data[None, ...])[0, ...] for x in [5, 10, 20] ], axis=-1, ).transpose([1, 0, 2]) # normalize each color channel for better viewing mn = spectrograms.min(axis=(0, 1), keepdims=True) mx = spectrograms.max(axis=(0, 1), keepdims=True) spectrograms = (spectrograms - mn) / (mx - mn) plt.imshow(spectrograms, origin="lower") plt.title("Multi-bandwidth Spectrogram") plt.xlabel("Time") plt.ylabel("Frequency") plt.show()

Demonstrate a sample wav file.

sample_wav_data = read_wav_file(pd_data["filename"].tolist()[52]) plt.plot(sample_wav_data[:, 0]) plt.show()

Plot a Spectrogram

plot_single_spectrogram(sample_wav_data)

Plot a multi-bandwidth spectrogram

plot_multi_bandwidth_spectrogram(sample_wav_data)

Define functions to construct a TF Dataset

def read_dataset(df, folds): msk = df["fold"].isin(folds) filenames = df["filename"][msk] targets = df["target"][msk].values waves = np.array([read_wav_file(fil) for fil in filenames], dtype=np.float32) return waves, targets

Create the datasets

train_x, train_y = read_dataset(pd_data, [1, 2, 3]) valid_x, valid_y = read_dataset(pd_data, [4]) test_x, test_y = read_dataset(pd_data, [5])

Training the Models

In this tutorial we demonstrate the different usecases of the STFTSpectrogram layer.

The first model will use a non-trainable STFTSpectrogram layer, so it is intended purely for preprocessing. Additionally, the model will use 1D signals, hence it make use of Conv1D layers.

The second model will use a trainable STFTSpectrogram layer with the expand_dims option, which expands the shapes to be compatible with image models.

Create the 1D model

  1. Create a non-trainable spectrograms, extracting a 1D time signal.

  2. Apply Conv1D layers with LayerNormalization simialar to the classic VGG design.

  3. Apply global maximum pooling to have fixed set of features.

  4. Add Dense layers to make the final predictions based on the features.

model1d = keras.Sequential( [ layers.InputLayer((None, 1)), layers.STFTSpectrogram( mode="log", frame_length=SAMPLE_RATE * 40 // 1000, frame_step=SAMPLE_RATE * 15 // 1000, trainable=False, ), layers.Conv1D(64, 64, activation="relu"), layers.Conv1D(128, 16, activation="relu"), layers.LayerNormalization(), layers.MaxPooling1D(4), layers.Conv1D(128, 8, activation="relu"), layers.Conv1D(256, 8, activation="relu"), layers.Conv1D(512, 4, activation="relu"), layers.LayerNormalization(), layers.Dropout(0.5), layers.GlobalMaxPooling1D(), layers.Dense(256, activation="relu"), layers.Dense(256, activation="relu"), layers.Dropout(0.5), layers.Dense(NUM_CLASSES, activation="softmax"), ], name="model_1d_non_trainble_stft", ) model1d.compile( optimizer=keras.optimizers.Adam(1e-5), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) model1d.summary()

Train the model and restore the best weights.

history_model1d = model1d.fit( train_x, train_y, batch_size=BATCH_SIZE, validation_data=(valid_x, valid_y), epochs=EPOCHS, callbacks=[ keras.callbacks.EarlyStopping( monitor="val_loss", patience=EPOCHS, restore_best_weights=True, ) ], )

Create the 2D model

  1. Create three spectrograms with multiple band-widths from the raw input.

  2. Concatenate the three spectrograms to have three channels.

  3. Load MobileNet and set the weights from the weights trained on ImageNet.

  4. Apply global maximum pooling to have fixed set of features.

  5. Add Dense layers to make the final predictions based on the features.

input = layers.Input((None, 1)) spectrograms = [ layers.STFTSpectrogram( mode="log", frame_length=SAMPLE_RATE * frame_size // 1000, frame_step=SAMPLE_RATE * 15 // 1000, fft_length=2048, padding="same", expand_dims=True, # trainable=True, # trainable by default )(input) for frame_size in [30, 40, 50] # frame size in milliseconds ] multi_spectrograms = layers.Concatenate(axis=-1)(spectrograms) img_model = keras.applications.MobileNet(include_top=False, pooling="max") output = img_model(multi_spectrograms) output = layers.Dropout(0.5)(output) output = layers.Dense(256, activation="relu")(output) output = layers.Dense(256, activation="relu")(output) output = layers.Dense(NUM_CLASSES, activation="softmax")(output) model2d = keras.Model(input, output, name="model_2d_trainble_stft") model2d.compile( optimizer=keras.optimizers.Adam(1e-4), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) model2d.summary()

Train the model and restore the best weights.

history_model2d = model2d.fit( train_x, train_y, batch_size=BATCH_SIZE, validation_data=(valid_x, valid_y), epochs=EPOCHS, callbacks=[ keras.callbacks.EarlyStopping( monitor="val_loss", patience=EPOCHS, restore_best_weights=True, ) ], )

Plot Training History

epochs_range = range(EPOCHS) plt.figure(figsize=(14, 5)) plt.subplot(1, 2, 1) plt.plot( epochs_range, history_model1d.history["accuracy"], label="Training Accuracy,1D model with non-trainable STFT", ) plt.plot( epochs_range, history_model1d.history["val_accuracy"], label="Validation Accuracy, 1D model with non-trainable STFT", ) plt.plot( epochs_range, history_model2d.history["accuracy"], label="Training Accuracy, 2D model with trainable STFT", ) plt.plot( epochs_range, history_model2d.history["val_accuracy"], label="Validation Accuracy, 2D model with trainable STFT", ) plt.legend(loc="lower right") plt.title("Training and Validation Accuracy") plt.subplot(1, 2, 2) plt.plot( epochs_range, history_model1d.history["loss"], label="Training Loss,1D model with non-trainable STFT", ) plt.plot( epochs_range, history_model1d.history["val_loss"], label="Validation Loss, 1D model with non-trainable STFT", ) plt.plot( epochs_range, history_model2d.history["loss"], label="Training Loss, 2D model with trainable STFT", ) plt.plot( epochs_range, history_model2d.history["val_loss"], label="Validation Loss, 2D model with trainable STFT", ) plt.legend(loc="upper right") plt.title("Training and Validation Loss") plt.show()

Evaluate on Test Data

Running the models on the test set.

_, test_acc = model1d.evaluate(test_x, test_y) print(f"1D model wit non-trainable STFT -> Test Accuracy: {test_acc * 100:.2f}%") _, test_acc = model2d.evaluate(test_x, test_y) print(f"2D model with trainable STFT -> Test Accuracy: {test_acc * 100:.2f}%")