Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/audio/ipynb/transformer_asr.ipynb
3508 views
Kernel: Python 3

Automatic Speech Recognition with Transformer

Author: Apoorv Nandan
Date created: 2021/01/13
Last modified: 2021/01/13
Description: Training a sequence-to-sequence Transformer for automatic speech recognition.

Introduction

Automatic speech recognition (ASR) consists of transcribing audio speech segments into text. ASR can be treated as a sequence-to-sequence problem, where the audio can be represented as a sequence of feature vectors and the text as a sequence of characters, words, or subword tokens.

For this demonstration, we will use the LJSpeech dataset from the LibriVox project. It consists of short audio clips of a single speaker reading passages from 7 non-fiction books. Our model will be similar to the original Transformer (both encoder and decoder) as proposed in the paper, "Attention is All You Need".

References:

import re import os os.environ["KERAS_BACKEND"] = "tensorflow" from glob import glob import tensorflow as tf import keras from keras import layers pattern_wav_name = re.compile(r'([^/\\\.]+)')

Define the Transformer Input Layer

When processing past target tokens for the decoder, we compute the sum of position embeddings and token embeddings.

When processing audio features, we apply convolutional layers to downsample them (via convolution strides) and process local relationships.

class TokenEmbedding(layers.Layer): def __init__(self, num_vocab=1000, maxlen=100, num_hid=64): super().__init__() self.emb = keras.layers.Embedding(num_vocab, num_hid) self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=num_hid) def call(self, x): maxlen = tf.shape(x)[-1] x = self.emb(x) positions = tf.range(start=0, limit=maxlen, delta=1) positions = self.pos_emb(positions) return x + positions class SpeechFeatureEmbedding(layers.Layer): def __init__(self, num_hid=64, maxlen=100): super().__init__() self.conv1 = keras.layers.Conv1D( num_hid, 11, strides=2, padding="same", activation="relu" ) self.conv2 = keras.layers.Conv1D( num_hid, 11, strides=2, padding="same", activation="relu" ) self.conv3 = keras.layers.Conv1D( num_hid, 11, strides=2, padding="same", activation="relu" ) def call(self, x): x = self.conv1(x) x = self.conv2(x) return self.conv3(x)

Transformer Encoder Layer

class TransformerEncoder(layers.Layer): def __init__(self, embed_dim, num_heads, feed_forward_dim, rate=0.1): super().__init__() self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.ffn = keras.Sequential( [ layers.Dense(feed_forward_dim, activation="relu"), layers.Dense(embed_dim), ] ) self.layernorm1 = layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = layers.LayerNormalization(epsilon=1e-6) self.dropout1 = layers.Dropout(rate) self.dropout2 = layers.Dropout(rate) def call(self, inputs, training=False): attn_output = self.att(inputs, inputs) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) return self.layernorm2(out1 + ffn_output)

Transformer Decoder Layer

class TransformerDecoder(layers.Layer): def __init__(self, embed_dim, num_heads, feed_forward_dim, dropout_rate=0.1): super().__init__() self.layernorm1 = layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = layers.LayerNormalization(epsilon=1e-6) self.layernorm3 = layers.LayerNormalization(epsilon=1e-6) self.self_att = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim ) self.enc_att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.self_dropout = layers.Dropout(0.5) self.enc_dropout = layers.Dropout(0.1) self.ffn_dropout = layers.Dropout(0.1) self.ffn = keras.Sequential( [ layers.Dense(feed_forward_dim, activation="relu"), layers.Dense(embed_dim), ] ) def causal_attention_mask(self, batch_size, n_dest, n_src, dtype): """Masks the upper half of the dot product matrix in self attention. This prevents flow of information from future tokens to current token. 1's in the lower triangle, counting from the lower right corner. """ i = tf.range(n_dest)[:, None] j = tf.range(n_src) m = i >= j - n_src + n_dest mask = tf.cast(m, dtype) mask = tf.reshape(mask, [1, n_dest, n_src]) mult = tf.concat( [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0 ) return tf.tile(mask, mult) def call(self, enc_out, target): input_shape = tf.shape(target) batch_size = input_shape[0] seq_len = input_shape[1] causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, tf.bool) target_att = self.self_att(target, target, attention_mask=causal_mask) target_norm = self.layernorm1(target + self.self_dropout(target_att)) enc_out = self.enc_att(target_norm, enc_out) enc_out_norm = self.layernorm2(self.enc_dropout(enc_out) + target_norm) ffn_out = self.ffn(enc_out_norm) ffn_out_norm = self.layernorm3(enc_out_norm + self.ffn_dropout(ffn_out)) return ffn_out_norm

Complete the Transformer model

Our model takes audio spectrograms as inputs and predicts a sequence of characters. During training, we give the decoder the target character sequence shifted to the left as input. During inference, the decoder uses its own past predictions to predict the next token.

class Transformer(keras.Model): def __init__( self, num_hid=64, num_head=2, num_feed_forward=128, source_maxlen=100, target_maxlen=100, num_layers_enc=4, num_layers_dec=1, num_classes=10, ): super().__init__() self.loss_metric = keras.metrics.Mean(name="loss") self.num_layers_enc = num_layers_enc self.num_layers_dec = num_layers_dec self.target_maxlen = target_maxlen self.num_classes = num_classes self.enc_input = SpeechFeatureEmbedding(num_hid=num_hid, maxlen=source_maxlen) self.dec_input = TokenEmbedding( num_vocab=num_classes, maxlen=target_maxlen, num_hid=num_hid ) self.encoder = keras.Sequential( [self.enc_input] + [ TransformerEncoder(num_hid, num_head, num_feed_forward) for _ in range(num_layers_enc) ] ) for i in range(num_layers_dec): setattr( self, f"dec_layer_{i}", TransformerDecoder(num_hid, num_head, num_feed_forward), ) self.classifier = layers.Dense(num_classes) def decode(self, enc_out, target): y = self.dec_input(target) for i in range(self.num_layers_dec): y = getattr(self, f"dec_layer_{i}")(enc_out, y) return y def call(self, inputs): source = inputs[0] target = inputs[1] x = self.encoder(source) y = self.decode(x, target) return self.classifier(y) @property def metrics(self): return [self.loss_metric] def train_step(self, batch): """Processes one batch inside model.fit().""" source = batch["source"] target = batch["target"] dec_input = target[:, :-1] dec_target = target[:, 1:] with tf.GradientTape() as tape: preds = self([source, dec_input]) one_hot = tf.one_hot(dec_target, depth=self.num_classes) mask = tf.math.logical_not(tf.math.equal(dec_target, 0)) loss = self.compute_loss(None, one_hot, preds, sample_weight=mask) trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) self.optimizer.apply_gradients(zip(gradients, trainable_vars)) self.loss_metric.update_state(loss) return {"loss": self.loss_metric.result()} def test_step(self, batch): source = batch["source"] target = batch["target"] dec_input = target[:, :-1] dec_target = target[:, 1:] preds = self([source, dec_input]) one_hot = tf.one_hot(dec_target, depth=self.num_classes) mask = tf.math.logical_not(tf.math.equal(dec_target, 0)) loss = self.compute_loss(None, one_hot, preds, sample_weight=mask) self.loss_metric.update_state(loss) return {"loss": self.loss_metric.result()} def generate(self, source, target_start_token_idx): """Performs inference over one batch of inputs using greedy decoding.""" bs = tf.shape(source)[0] enc = self.encoder(source) dec_input = tf.ones((bs, 1), dtype=tf.int32) * target_start_token_idx dec_logits = [] for i in range(self.target_maxlen - 1): dec_out = self.decode(enc, dec_input) logits = self.classifier(dec_out) logits = tf.argmax(logits, axis=-1, output_type=tf.int32) last_logit = tf.expand_dims(logits[:, -1], axis=-1) dec_logits.append(last_logit) dec_input = tf.concat([dec_input, last_logit], axis=-1) return dec_input

Download the dataset

Note: This requires ~3.6 GB of disk space and takes ~5 minutes for the extraction of files.

keras.utils.get_file( os.path.join(os.getcwd(), "data.tar.gz"), "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", extract=True, archive_format="tar", cache_dir=".", ) saveto = "./datasets/LJSpeech-1.1" wavs = glob("{}/**/*.wav".format(saveto), recursive=True) id_to_text = {} with open(os.path.join(saveto, "metadata.csv"), encoding="utf-8") as f: for line in f: id = line.strip().split("|")[0] text = line.strip().split("|")[2] id_to_text[id] = text def get_data(wavs, id_to_text, maxlen=50): """returns mapping of audio paths and transcription texts""" data = [] for w in wavs: id = pattern_wav_name.split(w)[-4] if len(id_to_text[id]) < maxlen: data.append({"audio": w, "text": id_to_text[id]}) return data

Preprocess the dataset

class VectorizeChar: def __init__(self, max_len=50): self.vocab = ( ["-", "#", "<", ">"] + [chr(i + 96) for i in range(1, 27)] + [" ", ".", ",", "?"] ) self.max_len = max_len self.char_to_idx = {} for i, ch in enumerate(self.vocab): self.char_to_idx[ch] = i def __call__(self, text): text = text.lower() text = text[: self.max_len - 2] text = "<" + text + ">" pad_len = self.max_len - len(text) return [self.char_to_idx.get(ch, 1) for ch in text] + [0] * pad_len def get_vocabulary(self): return self.vocab max_target_len = 200 # all transcripts in out data are < 200 characters data = get_data(wavs, id_to_text, max_target_len) vectorizer = VectorizeChar(max_target_len) print("vocab size", len(vectorizer.get_vocabulary())) def create_text_ds(data): texts = [_["text"] for _ in data] text_ds = [vectorizer(t) for t in texts] text_ds = tf.data.Dataset.from_tensor_slices(text_ds) return text_ds def path_to_audio(path): # spectrogram using stft audio = tf.io.read_file(path) audio, _ = tf.audio.decode_wav(audio, 1) audio = tf.squeeze(audio, axis=-1) stfts = tf.signal.stft(audio, frame_length=200, frame_step=80, fft_length=256) x = tf.math.pow(tf.abs(stfts), 0.5) # normalisation means = tf.math.reduce_mean(x, 1, keepdims=True) stddevs = tf.math.reduce_std(x, 1, keepdims=True) x = (x - means) / stddevs audio_len = tf.shape(x)[0] # padding to 10 seconds pad_len = 2754 paddings = tf.constant([[0, pad_len], [0, 0]]) x = tf.pad(x, paddings, "CONSTANT")[:pad_len, :] return x def create_audio_ds(data): flist = [_["audio"] for _ in data] audio_ds = tf.data.Dataset.from_tensor_slices(flist) audio_ds = audio_ds.map(path_to_audio, num_parallel_calls=tf.data.AUTOTUNE) return audio_ds def create_tf_dataset(data, bs=4): audio_ds = create_audio_ds(data) text_ds = create_text_ds(data) ds = tf.data.Dataset.zip((audio_ds, text_ds)) ds = ds.map(lambda x, y: {"source": x, "target": y}) ds = ds.batch(bs) ds = ds.prefetch(tf.data.AUTOTUNE) return ds split = int(len(data) * 0.99) train_data = data[:split] test_data = data[split:] ds = create_tf_dataset(train_data, bs=64) val_ds = create_tf_dataset(test_data, bs=4)

Callbacks to display predictions

class DisplayOutputs(keras.callbacks.Callback): def __init__( self, batch, idx_to_token, target_start_token_idx=27, target_end_token_idx=28 ): """Displays a batch of outputs after every epoch Args: batch: A test batch containing the keys "source" and "target" idx_to_token: A List containing the vocabulary tokens corresponding to their indices target_start_token_idx: A start token index in the target vocabulary target_end_token_idx: An end token index in the target vocabulary """ self.batch = batch self.target_start_token_idx = target_start_token_idx self.target_end_token_idx = target_end_token_idx self.idx_to_char = idx_to_token def on_epoch_end(self, epoch, logs=None): if epoch % 5 != 0: return source = self.batch["source"] target = self.batch["target"].numpy() bs = tf.shape(source)[0] preds = self.model.generate(source, self.target_start_token_idx) preds = preds.numpy() for i in range(bs): target_text = "".join([self.idx_to_char[_] for _ in target[i, :]]) prediction = "" for idx in preds[i, :]: prediction += self.idx_to_char[idx] if idx == self.target_end_token_idx: break print(f"target: {target_text.replace('-','')}") print(f"prediction: {prediction}\n")

Learning rate schedule

class CustomSchedule(keras.optimizers.schedules.LearningRateSchedule): def __init__( self, init_lr=0.00001, lr_after_warmup=0.001, final_lr=0.00001, warmup_epochs=15, decay_epochs=85, steps_per_epoch=203, ): super().__init__() self.init_lr = init_lr self.lr_after_warmup = lr_after_warmup self.final_lr = final_lr self.warmup_epochs = warmup_epochs self.decay_epochs = decay_epochs self.steps_per_epoch = steps_per_epoch def calculate_lr(self, epoch): """linear warm up - linear decay""" warmup_lr = ( self.init_lr + ((self.lr_after_warmup - self.init_lr) / (self.warmup_epochs - 1)) * epoch ) decay_lr = tf.math.maximum( self.final_lr, self.lr_after_warmup - (epoch - self.warmup_epochs) * (self.lr_after_warmup - self.final_lr) / self.decay_epochs, ) return tf.math.minimum(warmup_lr, decay_lr) def __call__(self, step): epoch = step // self.steps_per_epoch epoch = tf.cast(epoch, "float32") return self.calculate_lr(epoch)

Create & train the end-to-end model

batch = next(iter(val_ds)) # The vocabulary to convert predicted indices into characters idx_to_char = vectorizer.get_vocabulary() display_cb = DisplayOutputs( batch, idx_to_char, target_start_token_idx=2, target_end_token_idx=3 ) # set the arguments as per vocabulary index for '<' and '>' model = Transformer( num_hid=200, num_head=2, num_feed_forward=400, target_maxlen=max_target_len, num_layers_enc=4, num_layers_dec=1, num_classes=34, ) loss_fn = keras.losses.CategoricalCrossentropy( from_logits=True, label_smoothing=0.1, ) learning_rate = CustomSchedule( init_lr=0.00001, lr_after_warmup=0.001, final_lr=0.00001, warmup_epochs=15, decay_epochs=85, steps_per_epoch=len(ds), ) optimizer = keras.optimizers.Adam(learning_rate) model.compile(optimizer=optimizer, loss=loss_fn) history = model.fit(ds, validation_data=val_ds, callbacks=[display_cb], epochs=1)

In practice, you should train for around 100 epochs or more.

Some of the predicted text at or around epoch 35 may look as follows:

target: <as they sat in the car, frazier asked oswald where his lunch was> prediction: <as they sat in the car frazier his lunch ware mis lunch was> target: <under the entry for may one, nineteen sixty,> prediction: <under the introus for may monee, nin the sixty,>