"""
Title: Node Classification with Graph Neural Networks
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2021/05/30
Last modified: 2021/05/30
Description: Implementing a graph neural network model for predicting the topic of a paper given its citations.
Accelerator: GPU
"""
"""
## Introduction
Many datasets in various machine learning (ML) applications have structural relationships
between their entities, which can be represented as graphs. Such application includes
social and communication networks analysis, traffic prediction, and fraud detection.
[Graph representation Learning](https://www.cs.mcgill.ca/~wlh/grl_book/)
aims to build and train models for graph datasets to be used for a variety of ML tasks.
This example demonstrate a simple implementation of a [Graph Neural Network](https://arxiv.org/pdf/1901.00596.pdf)
(GNN) model. The model is used for a node prediction task on the [Cora dataset](https://relational.fit.cvut.cz/dataset/CORA)
to predict the subject of a paper given its words and citations network.
Note that, **we implement a Graph Convolution Layer from scratch** to provide better
understanding of how they work. However, there is a number of specialized TensorFlow-based
libraries that provide rich GNN APIs, such as [Spectral](https://graphneural.network/),
[StellarGraph](https://stellargraph.readthedocs.io/en/stable/README.html), and
[GraphNets](https://github.com/deepmind/graph_nets).
"""
"""
## Setup
"""
import os
import pandas as pd
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
"""
## Prepare the Dataset
The Cora dataset consists of 2,708 scientific papers classified into one of seven classes.
The citation network consists of 5,429 links. Each paper has a binary word vector of size
1,433, indicating the presence of a corresponding word.
### Download the dataset
The dataset has two tap-separated files: `cora.cites` and `cora.content`.
1. The `cora.cites` includes the citation records with two columns:
`cited_paper_id` (target) and `citing_paper_id` (source).
2. The `cora.content` includes the paper content records with 1,435 columns:
`paper_id`, `subject`, and 1,433 binary features.
Let's download the dataset.
"""
zip_file = keras.utils.get_file(
fname="cora.tgz",
origin="https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz",
extract=True,
)
data_dir = os.path.join(os.path.dirname(zip_file), "cora")
"""
### Process and visualize the dataset
Then we load the citations data into a Pandas DataFrame.
"""
citations = pd.read_csv(
os.path.join(data_dir, "cora.cites"),
sep="\t",
header=None,
names=["target", "source"],
)
print("Citations shape:", citations.shape)
"""
Now we display a sample of the `citations` DataFrame.
The `target` column includes the paper ids cited by the paper ids in the `source` column.
"""
citations.sample(frac=1).head()
"""
Now let's load the papers data into a Pandas DataFrame.
"""
column_names = ["paper_id"] + [f"term_{idx}" for idx in range(1433)] + ["subject"]
papers = pd.read_csv(
os.path.join(data_dir, "cora.content"),
sep="\t",
header=None,
names=column_names,
)
print("Papers shape:", papers.shape)
"""
Now we display a sample of the `papers` DataFrame. The DataFrame includes the `paper_id`
and the `subject` columns, as well as 1,433 binary column representing whether a term exists
in the paper or not.
"""
print(papers.sample(5).T)
"""
Let's display the count of the papers in each subject.
"""
print(papers.subject.value_counts())
"""
We convert the paper ids and the subjects into zero-based indices.
"""
class_values = sorted(papers["subject"].unique())
class_idx = {name: id for id, name in enumerate(class_values)}
paper_idx = {name: idx for idx, name in enumerate(sorted(papers["paper_id"].unique()))}
papers["paper_id"] = papers["paper_id"].apply(lambda name: paper_idx[name])
citations["source"] = citations["source"].apply(lambda name: paper_idx[name])
citations["target"] = citations["target"].apply(lambda name: paper_idx[name])
papers["subject"] = papers["subject"].apply(lambda value: class_idx[value])
"""
Now let's visualize the citation graph. Each node in the graph represents a paper,
and the color of the node corresponds to its subject. Note that we only show a sample of
the papers in the dataset.
"""
plt.figure(figsize=(10, 10))
colors = papers["subject"].tolist()
cora_graph = nx.from_pandas_edgelist(citations.sample(n=1500))
subjects = list(papers[papers["paper_id"].isin(list(cora_graph.nodes))]["subject"])
nx.draw_spring(cora_graph, node_size=15, node_color=subjects)
"""
### Split the dataset into stratified train and test sets
"""
train_data, test_data = [], []
for _, group_data in papers.groupby("subject"):
random_selection = np.random.rand(len(group_data.index)) <= 0.5
train_data.append(group_data[random_selection])
test_data.append(group_data[~random_selection])
train_data = pd.concat(train_data).sample(frac=1)
test_data = pd.concat(test_data).sample(frac=1)
print("Train data shape:", train_data.shape)
print("Test data shape:", test_data.shape)
"""
## Implement Train and Evaluate Experiment
"""
hidden_units = [32, 32]
learning_rate = 0.01
dropout_rate = 0.5
num_epochs = 300
batch_size = 256
"""
This function compiles and trains an input model using the given training data.
"""
def run_experiment(model, x_train, y_train):
model.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")],
)
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_acc", patience=50, restore_best_weights=True
)
history = model.fit(
x=x_train,
y=y_train,
epochs=num_epochs,
batch_size=batch_size,
validation_split=0.15,
callbacks=[early_stopping],
)
return history
"""
This function displays the loss and accuracy curves of the model during training.
"""
def display_learning_curves(history):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
ax1.plot(history.history["loss"])
ax1.plot(history.history["val_loss"])
ax1.legend(["train", "test"], loc="upper right")
ax1.set_xlabel("Epochs")
ax1.set_ylabel("Loss")
ax2.plot(history.history["acc"])
ax2.plot(history.history["val_acc"])
ax2.legend(["train", "test"], loc="upper right")
ax2.set_xlabel("Epochs")
ax2.set_ylabel("Accuracy")
plt.show()
"""
## Implement Feedforward Network (FFN) Module
We will use this module in the baseline and the GNN models.
"""
def create_ffn(hidden_units, dropout_rate, name=None):
fnn_layers = []
for units in hidden_units:
fnn_layers.append(layers.BatchNormalization())
fnn_layers.append(layers.Dropout(dropout_rate))
fnn_layers.append(layers.Dense(units, activation=tf.nn.gelu))
return keras.Sequential(fnn_layers, name=name)
"""
## Build a Baseline Neural Network Model
### Prepare the data for the baseline model
"""
feature_names = list(set(papers.columns) - {"paper_id", "subject"})
num_features = len(feature_names)
num_classes = len(class_idx)
x_train = train_data[feature_names].to_numpy()
x_test = test_data[feature_names].to_numpy()
y_train = train_data["subject"]
y_test = test_data["subject"]
"""
### Implement a baseline classifier
We add five FFN blocks with skip connections, so that we generate a baseline model with
roughly the same number of parameters as the GNN models to be built later.
"""
def create_baseline_model(hidden_units, num_classes, dropout_rate=0.2):
inputs = layers.Input(shape=(num_features,), name="input_features")
x = create_ffn(hidden_units, dropout_rate, name=f"ffn_block1")(inputs)
for block_idx in range(4):
x1 = create_ffn(hidden_units, dropout_rate, name=f"ffn_block{block_idx + 2}")(x)
x = layers.Add(name=f"skip_connection{block_idx + 2}")([x, x1])
logits = layers.Dense(num_classes, name="logits")(x)
return keras.Model(inputs=inputs, outputs=logits, name="baseline")
baseline_model = create_baseline_model(hidden_units, num_classes, dropout_rate)
baseline_model.summary()
"""
### Train the baseline classifier
"""
history = run_experiment(baseline_model, x_train, y_train)
"""
Let's plot the learning curves.
"""
display_learning_curves(history)
"""
Now we evaluate the baseline model on the test data split.
"""
_, test_accuracy = baseline_model.evaluate(x=x_test, y=y_test, verbose=0)
print(f"Test accuracy: {round(test_accuracy * 100, 2)}%")
"""
### Examine the baseline model predictions
Let's create new data instances by randomly generating binary word vectors with respect to
the word presence probabilities.
"""
def generate_random_instances(num_instances):
token_probability = x_train.mean(axis=0)
instances = []
for _ in range(num_instances):
probabilities = np.random.uniform(size=len(token_probability))
instance = (probabilities <= token_probability).astype(int)
instances.append(instance)
return np.array(instances)
def display_class_probabilities(probabilities):
for instance_idx, probs in enumerate(probabilities):
print(f"Instance {instance_idx + 1}:")
for class_idx, prob in enumerate(probs):
print(f"- {class_values[class_idx]}: {round(prob * 100, 2)}%")
"""
Now we show the baseline model predictions given these randomly generated instances.
"""
new_instances = generate_random_instances(num_classes)
logits = baseline_model.predict(new_instances)
probabilities = keras.activations.softmax(tf.convert_to_tensor(logits)).numpy()
display_class_probabilities(probabilities)
"""
## Build a Graph Neural Network Model
### Prepare the data for the graph model
Preparing and loading the graphs data into the model for training is the most challenging
part in GNN models, which is addressed in different ways by the specialised libraries.
In this example, we show a simple approach for preparing and using graph data that is suitable
if your dataset consists of a single graph that fits entirely in memory.
The graph data is represented by the `graph_info` tuple, which consists of the following
three elements:
1. `node_features`: This is a `[num_nodes, num_features]` NumPy array that includes the
node features. In this dataset, the nodes are the papers, and the `node_features` are the
word-presence binary vectors of each paper.
2. `edges`: This is `[num_edges, num_edges]` NumPy array representing a sparse
[adjacency matrix](https://en.wikipedia.org/wiki/Adjacency_matrix#:~:text=In%20graph%20theory%20and%20computer,with%20zeros%20on%20its%20diagonal.)
of the links between the nodes. In this example, the links are the citations between the papers.
3. `edge_weights` (optional): This is a `[num_edges]` NumPy array that includes the edge weights, which *quantify*
the relationships between nodes in the graph. In this example, there are no weights for the paper citations.
"""
edges = citations[["source", "target"]].to_numpy().T
edge_weights = tf.ones(shape=edges.shape[1])
node_features = tf.cast(
papers.sort_values("paper_id")[feature_names].to_numpy(), dtype=tf.dtypes.float32
)
graph_info = (node_features, edges, edge_weights)
print("Edges shape:", edges.shape)
print("Nodes shape:", node_features.shape)
"""
### Implement a graph convolution layer
We implement a graph convolution module as a [Keras Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer?version=nightly).
Our `GraphConvLayer` performs the following steps:
1. **Prepare**: The input node representations are processed using a FFN to produce a *message*. You can simplify
the processing by only applying linear transformation to the representations.
2. **Aggregate**: The messages of the neighbours of each node are aggregated with
respect to the `edge_weights` using a *permutation invariant* pooling operation, such as *sum*, *mean*, and *max*,
to prepare a single aggregated message for each node. See, for example, [tf.math.unsorted_segment_sum](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum)
APIs used to aggregate neighbour messages.
3. **Update**: The `node_repesentations` and `aggregated_messages`—both of shape `[num_nodes, representation_dim]`—
are combined and processed to produce the new state of the node representations (node embeddings).
If `combination_type` is `gru`, the `node_repesentations` and `aggregated_messages` are stacked to create a sequence,
then processed by a GRU layer. Otherwise, the `node_repesentations` and `aggregated_messages` are added
or concatenated, then processed using a FFN.
The technique implemented use ideas from [Graph Convolutional Networks](https://arxiv.org/abs/1609.02907),
[GraphSage](https://arxiv.org/abs/1706.02216), [Graph Isomorphism Network](https://arxiv.org/abs/1810.00826),
[Simple Graph Networks](https://arxiv.org/abs/1902.07153), and
[Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493).
Two other key techniques that are not covered are [Graph Attention Networks](https://arxiv.org/abs/1710.10903)
and [Message Passing Neural Networks](https://arxiv.org/abs/1704.01212).
"""
def create_gru(hidden_units, dropout_rate):
inputs = keras.layers.Input(shape=(2, hidden_units[0]))
x = inputs
for units in hidden_units:
x = layers.GRU(
units=units,
activation="tanh",
recurrent_activation="sigmoid",
return_sequences=True,
dropout=dropout_rate,
return_state=False,
recurrent_dropout=dropout_rate,
)(x)
return keras.Model(inputs=inputs, outputs=x)
class GraphConvLayer(layers.Layer):
def __init__(
self,
hidden_units,
dropout_rate=0.2,
aggregation_type="mean",
combination_type="concat",
normalize=False,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.aggregation_type = aggregation_type
self.combination_type = combination_type
self.normalize = normalize
self.ffn_prepare = create_ffn(hidden_units, dropout_rate)
if self.combination_type == "gru":
self.update_fn = create_gru(hidden_units, dropout_rate)
else:
self.update_fn = create_ffn(hidden_units, dropout_rate)
def prepare(self, node_repesentations, weights=None):
messages = self.ffn_prepare(node_repesentations)
if weights is not None:
messages = messages * tf.expand_dims(weights, -1)
return messages
def aggregate(self, node_indices, neighbour_messages, node_repesentations):
num_nodes = node_repesentations.shape[0]
if self.aggregation_type == "sum":
aggregated_message = tf.math.unsorted_segment_sum(
neighbour_messages, node_indices, num_segments=num_nodes
)
elif self.aggregation_type == "mean":
aggregated_message = tf.math.unsorted_segment_mean(
neighbour_messages, node_indices, num_segments=num_nodes
)
elif self.aggregation_type == "max":
aggregated_message = tf.math.unsorted_segment_max(
neighbour_messages, node_indices, num_segments=num_nodes
)
else:
raise ValueError(f"Invalid aggregation type: {self.aggregation_type}.")
return aggregated_message
def update(self, node_repesentations, aggregated_messages):
if self.combination_type == "gru":
h = tf.stack([node_repesentations, aggregated_messages], axis=1)
elif self.combination_type == "concat":
h = tf.concat([node_repesentations, aggregated_messages], axis=1)
elif self.combination_type == "add":
h = node_repesentations + aggregated_messages
else:
raise ValueError(f"Invalid combination type: {self.combination_type}.")
node_embeddings = self.update_fn(h)
if self.combination_type == "gru":
node_embeddings = tf.unstack(node_embeddings, axis=1)[-1]
if self.normalize:
node_embeddings = tf.nn.l2_normalize(node_embeddings, axis=-1)
return node_embeddings
def call(self, inputs):
"""Process the inputs to produce the node_embeddings.
inputs: a tuple of three elements: node_repesentations, edges, edge_weights.
Returns: node_embeddings of shape [num_nodes, representation_dim].
"""
node_repesentations, edges, edge_weights = inputs
node_indices, neighbour_indices = edges[0], edges[1]
neighbour_repesentations = tf.gather(node_repesentations, neighbour_indices)
neighbour_messages = self.prepare(neighbour_repesentations, edge_weights)
aggregated_messages = self.aggregate(
node_indices, neighbour_messages, node_repesentations
)
return self.update(node_repesentations, aggregated_messages)
"""
### Implement a graph neural network node classifier
The GNN classification model follows the [Design Space for Graph Neural Networks](https://arxiv.org/abs/2011.08843) approach,
as follows:
1. Apply preprocessing using FFN to the node features to generate initial node representations.
2. Apply one or more graph convolutional layer, with skip connections, to the node representation
to produce node embeddings.
3. Apply post-processing using FFN to the node embeddings to generate the final node embeddings.
4. Feed the node embeddings in a Softmax layer to predict the node class.
Each graph convolutional layer added captures information from a further level of neighbours.
However, adding many graph convolutional layer can cause oversmoothing, where the model
produces similar embeddings for all the nodes.
Note that the `graph_info` passed to the constructor of the Keras model, and used as a *property*
of the Keras model object, rather than input data for training or prediction.
The model will accept a **batch** of `node_indices`, which are used to lookup the
node features and neighbours from the `graph_info`.
"""
class GNNNodeClassifier(tf.keras.Model):
def __init__(
self,
graph_info,
num_classes,
hidden_units,
aggregation_type="sum",
combination_type="concat",
dropout_rate=0.2,
normalize=True,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
node_features, edges, edge_weights = graph_info
self.node_features = node_features
self.edges = edges
self.edge_weights = edge_weights
if self.edge_weights is None:
self.edge_weights = tf.ones(shape=edges.shape[1])
self.edge_weights = self.edge_weights / tf.math.reduce_sum(self.edge_weights)
self.preprocess = create_ffn(hidden_units, dropout_rate, name="preprocess")
self.conv1 = GraphConvLayer(
hidden_units,
dropout_rate,
aggregation_type,
combination_type,
normalize,
name="graph_conv1",
)
self.conv2 = GraphConvLayer(
hidden_units,
dropout_rate,
aggregation_type,
combination_type,
normalize,
name="graph_conv2",
)
self.postprocess = create_ffn(hidden_units, dropout_rate, name="postprocess")
self.compute_logits = layers.Dense(units=num_classes, name="logits")
def call(self, input_node_indices):
x = self.preprocess(self.node_features)
x1 = self.conv1((x, self.edges, self.edge_weights))
x = x1 + x
x2 = self.conv2((x, self.edges, self.edge_weights))
x = x2 + x
x = self.postprocess(x)
node_embeddings = tf.gather(x, input_node_indices)
return self.compute_logits(node_embeddings)
"""
Let's test instantiating and calling the GNN model.
Notice that if you provide `N` node indices, the output will be a tensor of shape `[N, num_classes]`,
regardless of the size of the graph.
"""
gnn_model = GNNNodeClassifier(
graph_info=graph_info,
num_classes=num_classes,
hidden_units=hidden_units,
dropout_rate=dropout_rate,
name="gnn_model",
)
print("GNN output shape:", gnn_model([1, 10, 100]))
gnn_model.summary()
"""
### Train the GNN model
Note that we use the standard *supervised* cross-entropy loss to train the model.
However, we can add another *self-supervised* loss term for the generated node embeddings
that makes sure that neighbouring nodes in graph have similar representations, while faraway
nodes have dissimilar representations.
"""
x_train = train_data.paper_id.to_numpy()
history = run_experiment(gnn_model, x_train, y_train)
"""
Let's plot the learning curves
"""
display_learning_curves(history)
"""
Now we evaluate the GNN model on the test data split.
The results may vary depending on the training sample, however the GNN model always outperforms
the baseline model in terms of the test accuracy.
"""
x_test = test_data.paper_id.to_numpy()
_, test_accuracy = gnn_model.evaluate(x=x_test, y=y_test, verbose=0)
print(f"Test accuracy: {round(test_accuracy * 100, 2)}%")
"""
### Examine the GNN model predictions
Let's add the new instances as nodes to the `node_features`, and generate links
(citations) to existing nodes.
"""
num_nodes = node_features.shape[0]
new_node_features = np.concatenate([node_features, new_instances])
new_node_indices = [i + num_nodes for i in range(num_classes)]
new_citations = []
for subject_idx, group in papers.groupby("subject"):
subject_papers = list(group.paper_id)
selected_paper_indices1 = np.random.choice(subject_papers, 5)
selected_paper_indices2 = np.random.choice(list(papers.paper_id), 2)
selected_paper_indices = np.concatenate(
[selected_paper_indices1, selected_paper_indices2], axis=0
)
citing_paper_indx = new_node_indices[subject_idx]
for cited_paper_idx in selected_paper_indices:
new_citations.append([citing_paper_indx, cited_paper_idx])
new_citations = np.array(new_citations).T
new_edges = np.concatenate([edges, new_citations], axis=1)
"""
Now let's update the `node_features` and the `edges` in the GNN model.
"""
print("Original node_features shape:", gnn_model.node_features.shape)
print("Original edges shape:", gnn_model.edges.shape)
gnn_model.node_features = new_node_features
gnn_model.edges = new_edges
gnn_model.edge_weights = tf.ones(shape=new_edges.shape[1])
print("New node_features shape:", gnn_model.node_features.shape)
print("New edges shape:", gnn_model.edges.shape)
logits = gnn_model.predict(tf.convert_to_tensor(new_node_indices))
probabilities = keras.activations.softmax(tf.convert_to_tensor(logits)).numpy()
display_class_probabilities(probabilities)
"""
Notice that the probabilities of the expected subjects
(to which several citations are added) are higher compared to the baseline model.
"""