Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/graph/md/node2vec_movielens.md
3508 views

Graph representation learning with node2vec

Author: Khalid Salama
Date created: 2021/05/15
Last modified: 2021/05/15
Description: Implementing the node2vec model to generate embeddings for movies from the MovieLens dataset.

View in Colab GitHub source


Introduction

Learning useful representations from objects structured as graphs is useful for a variety of machine learning (ML) applications—such as social and communication networks analysis, biomedicine studies, and recommendation systems. Graph representation Learning aims to learn embeddings for the graph nodes, which can be used for a variety of ML tasks such as node label prediction (e.g. categorizing an article based on its citations) and link prediction (e.g. recommending an interest group to a user in a social network).

node2vec is a simple, yet scalable and effective technique for learning low-dimensional embeddings for nodes in a graph by optimizing a neighborhood-preserving objective. The aim is to learn similar embeddings for neighboring nodes, with respect to the graph structure.

Given your data items structured as a graph (where the items are represented as nodes and the relationship between items are represented as edges), node2vec works as follows:

  1. Generate item sequences using (biased) random walk.

  2. Create positive and negative training examples from these sequences.

  3. Train a word2vec model (skip-gram) to learn embeddings for the items.

In this example, we demonstrate the node2vec technique on the small version of the Movielens dataset to learn movie embeddings. Such a dataset can be represented as a graph by treating the movies as nodes, and creating edges between movies that have similar ratings by the users. The learnt movie embeddings can be used for tasks such as movie recommendation, or movie genres prediction.

This example requires networkx package, which can be installed using the following command:

pip install networkx

Setup

import os from collections import defaultdict import math import networkx as nx import random from tqdm import tqdm from zipfile import ZipFile from urllib.request import urlretrieve import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt

Download the MovieLens dataset and prepare the data

The small version of the MovieLens dataset includes around 100k ratings from 610 users on 9,742 movies.

First, let's download the dataset. The downloaded folder will contain three data files: users.csv, movies.csv, and ratings.csv. In this example, we will only need the movies.dat, and ratings.dat data files.

urlretrieve( "http://files.grouplens.org/datasets/movielens/ml-latest-small.zip", "movielens.zip" ) ZipFile("movielens.zip", "r").extractall()

Then, we load the data into a Pandas DataFrame and perform some basic preprocessing.

# Load movies to a DataFrame. movies = pd.read_csv("ml-latest-small/movies.csv") # Create a `movieId` string. movies["movieId"] = movies["movieId"].apply(lambda x: f"movie_{x}") # Load ratings to a DataFrame. ratings = pd.read_csv("ml-latest-small/ratings.csv") # Convert the `ratings` to floating point ratings["rating"] = ratings["rating"].apply(lambda x: float(x)) # Create the `movie_id` string. ratings["movieId"] = ratings["movieId"].apply(lambda x: f"movie_{x}") print("Movies data shape:", movies.shape) print("Ratings data shape:", ratings.shape)
``` Movies data shape: (9742, 3) Ratings data shape: (100836, 4)
</div> Let's inspect a sample instance of the `ratings` DataFrame. ```python ratings.head()
``` .dataframe tbody tr th { vertical-align: top; }

.dataframe thead th { text-align: right; }

</div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>userId</th> <th>movieId</th> <th>rating</th> <th>timestamp</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>movie_1</td> <td>4.0</td> <td>964982703</td> </tr> <tr> <th>1</th> <td>1</td> <td>movie_3</td> <td>4.0</td> <td>964981247</td> </tr> <tr> <th>2</th> <td>1</td> <td>movie_6</td> <td>4.0</td> <td>964982224</td> </tr> <tr> <th>3</th> <td>1</td> <td>movie_47</td> <td>5.0</td> <td>964983815</td> </tr> <tr> <th>4</th> <td>1</td> <td>movie_50</td> <td>5.0</td> <td>964982931</td> </tr> </tbody> </table> </div> Next, let's check a sample instance of the `movies` DataFrame. ```python movies.head()
``` .dataframe tbody tr th { vertical-align: top; }

.dataframe thead th { text-align: right; }

</div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>movieId</th> <th>title</th> <th>genres</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>movie_1</td> <td>Toy Story (1995)</td> <td>Adventure|Animation|Children|Comedy|Fantasy</td> </tr> <tr> <th>1</th> <td>movie_2</td> <td>Jumanji (1995)</td> <td>Adventure|Children|Fantasy</td> </tr> <tr> <th>2</th> <td>movie_3</td> <td>Grumpier Old Men (1995)</td> <td>Comedy|Romance</td> </tr> <tr> <th>3</th> <td>movie_4</td> <td>Waiting to Exhale (1995)</td> <td>Comedy|Drama|Romance</td> </tr> <tr> <th>4</th> <td>movie_5</td> <td>Father of the Bride Part II (1995)</td> <td>Comedy</td> </tr> </tbody> </table> </div> Implement two utility functions for the `movies` DataFrame. ```python def get_movie_title_by_id(movieId): return list(movies[movies.movieId == movieId].title)[0] def get_movie_id_by_title(title): return list(movies[movies.title == title].movieId)[0]

Construct the Movies graph

We create an edge between two movie nodes in the graph if both movies are rated by the same user >= min_rating. The weight of the edge will be based on the pointwise mutual information between the two movies, which is computed as: log(xy) - log(x) - log(y) + log(D), where:

  • xy is how many users rated both movie x and movie y with >= min_rating.

  • x is how many users rated movie x >= min_rating.

  • y is how many users rated movie y >= min_rating.

  • D total number of movie ratings >= min_rating.

Step 1: create the weighted edges between movies.

min_rating = 5 pair_frequency = defaultdict(int) item_frequency = defaultdict(int) # Filter instances where rating is greater than or equal to min_rating. rated_movies = ratings[ratings.rating >= min_rating] # Group instances by user. movies_grouped_by_users = list(rated_movies.groupby("userId")) for group in tqdm( movies_grouped_by_users, position=0, leave=True, desc="Compute movie rating frequencies", ): # Get a list of movies rated by the user. current_movies = list(group[1]["movieId"]) for i in range(len(current_movies)): item_frequency[current_movies[i]] += 1 for j in range(i + 1, len(current_movies)): x = min(current_movies[i], current_movies[j]) y = max(current_movies[i], current_movies[j]) pair_frequency[(x, y)] += 1
``` Compute movie rating frequencies: 100%|███████████████████████████████████████████████████████████████████████████| 573/573 [00:00<00:00, 1049.83it/s]
</div> ### Step 2: create the graph with the nodes and the edges To reduce the number of edges between nodes, we only add an edge between movies if the weight of the edge is greater than `min_weight`. ```python min_weight = 10 D = math.log(sum(item_frequency.values())) # Create the movies undirected graph. movies_graph = nx.Graph() # Add weighted edges between movies. # This automatically adds the movie nodes to the graph. for pair in tqdm( pair_frequency, position=0, leave=True, desc="Creating the movie graph" ): x, y = pair xy_frequency = pair_frequency[pair] x_frequency = item_frequency[x] y_frequency = item_frequency[y] pmi = math.log(xy_frequency) - math.log(x_frequency) - math.log(y_frequency) + D weight = pmi * xy_frequency # Only include edges with weight >= min_weight. if weight >= min_weight: movies_graph.add_edge(x, y, weight=weight)
``` Creating the movie graph: 100%|███████████████████████████████████████████████████████████████████████████| 298586/298586 [00:00<00:00, 552893.62it/s]
</div> Let's display the total number of nodes and edges in the graph. Note that the number of nodes is less than the total number of movies, since only the movies that have edges to other movies are added. ```python print("Total number of graph nodes:", movies_graph.number_of_nodes()) print("Total number of graph edges:", movies_graph.number_of_edges())
``` Total number of graph nodes: 1405 Total number of graph edges: 40043
</div> Let's display the average node degree (number of neighbours) in the graph. ```python degrees = [] for node in movies_graph.nodes: degrees.append(movies_graph.degree[node]) print("Average node degree:", round(sum(degrees) / len(degrees), 2))
``` Average node degree: 57.0
</div> ### Step 3: Create vocabulary and a mapping from tokens to integer indices The vocabulary is the nodes (movie IDs) in the graph. ```python vocabulary = ["NA"] + list(movies_graph.nodes) vocabulary_lookup = {token: idx for idx, token in enumerate(vocabulary)}

Implement the biased random walk

A random walk starts from a given node, and randomly picks a neighbour node to move to. If the edges are weighted, the neighbour is selected probabilistically with respect to weights of the edges between the current node and its neighbours. This procedure is repeated for num_steps to generate a sequence of related nodes.

The biased random walk balances between breadth-first sampling (where only local neighbours are visited) and depth-first sampling (where distant neighbours are visited) by introducing the following two parameters:

  1. Return parameter (p): Controls the likelihood of immediately revisiting a node in the walk. Setting it to a high value encourages moderate exploration, while setting it to a low value would keep the walk local.

  2. In-out parameter (q): Allows the search to differentiate between inward and outward nodes. Setting it to a high value biases the random walk towards local nodes, while setting it to a low value biases the walk to visit nodes which are further away.

def next_step(graph, previous, current, p, q): neighbors = list(graph.neighbors(current)) weights = [] # Adjust the weights of the edges to the neighbors with respect to p and q. for neighbor in neighbors: if neighbor == previous: # Control the probability to return to the previous node. weights.append(graph[current][neighbor]["weight"] / p) elif graph.has_edge(neighbor, previous): # The probability of visiting a local node. weights.append(graph[current][neighbor]["weight"]) else: # Control the probability to move forward. weights.append(graph[current][neighbor]["weight"] / q) # Compute the probabilities of visiting each neighbor. weight_sum = sum(weights) probabilities = [weight / weight_sum for weight in weights] # Probabilistically select a neighbor to visit. next = np.random.choice(neighbors, size=1, p=probabilities)[0] return next def random_walk(graph, num_walks, num_steps, p, q): walks = [] nodes = list(graph.nodes()) # Perform multiple iterations of the random walk. for walk_iteration in range(num_walks): random.shuffle(nodes) for node in tqdm( nodes, position=0, leave=True, desc=f"Random walks iteration {walk_iteration + 1} of {num_walks}", ): # Start the walk with a random node from the graph. walk = [node] # Randomly walk for num_steps. while len(walk) < num_steps: current = walk[-1] previous = walk[-2] if len(walk) > 1 else None # Compute the next node to visit. next = next_step(graph, previous, current, p, q) walk.append(next) # Replace node ids (movie ids) in the walk with token ids. walk = [vocabulary_lookup[token] for token in walk] # Add the walk to the generated sequence. walks.append(walk) return walks

Generate training data using the biased random walk

You can explore different configurations of p and q to different results of related movies.

# Random walk return parameter. p = 1 # Random walk in-out parameter. q = 1 # Number of iterations of random walks. num_walks = 5 # Number of steps of each random walk. num_steps = 10 walks = random_walk(movies_graph, num_walks, num_steps, p, q) print("Number of walks generated:", len(walks))
``` Random walks iteration 1 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 291.76it/s] Random walks iteration 2 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 302.56it/s] Random walks iteration 3 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 294.52it/s] Random walks iteration 4 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 304.06it/s] Random walks iteration 5 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 302.15it/s]

Number of walks generated: 7025

</div> --- ## Generate positive and negative examples To train a skip-gram model, we use the generated walks to create positive and negative training examples. Each example includes the following features: 1. `target`: A movie in a walk sequence. 2. `context`: Another movie in a walk sequence. 3. `weight`: How many times these two movies occurred in walk sequences. 4. `label`: The label is 1 if these two movies are samples from the walk sequences, otherwise (i.e., if randomly sampled) the label is 0. ### Generate examples ```python def generate_examples(sequences, window_size, num_negative_samples, vocabulary_size): example_weights = defaultdict(int) # Iterate over all sequences (walks). for sequence in tqdm( sequences, position=0, leave=True, desc=f"Generating positive and negative examples", ): # Generate positive and negative skip-gram pairs for a sequence (walk). pairs, labels = keras.preprocessing.sequence.skipgrams( sequence, vocabulary_size=vocabulary_size, window_size=window_size, negative_samples=num_negative_samples, ) for idx in range(len(pairs)): pair = pairs[idx] label = labels[idx] target, context = min(pair[0], pair[1]), max(pair[0], pair[1]) if target == context: continue entry = (target, context, label) example_weights[entry] += 1 targets, contexts, labels, weights = [], [], [], [] for entry in example_weights: weight = example_weights[entry] target, context, label = entry targets.append(target) contexts.append(context) labels.append(label) weights.append(weight) return np.array(targets), np.array(contexts), np.array(labels), np.array(weights) num_negative_samples = 4 targets, contexts, labels, weights = generate_examples( sequences=walks, window_size=num_steps, num_negative_samples=num_negative_samples, vocabulary_size=len(vocabulary), )
``` Generating positive and negative examples: 100%|██████████████████████████████████████████████████████████████████| 7025/7025 [00:11<00:00, 617.64it/s]
</div> Let's display the shapes of the outputs ```python print(f"Targets shape: {targets.shape}") print(f"Contexts shape: {contexts.shape}") print(f"Labels shape: {labels.shape}") print(f"Weights shape: {weights.shape}")
``` Targets shape: (881412,) Contexts shape: (881412,) Labels shape: (881412,) Weights shape: (881412,)
</div> ### Convert the data into `tf.data.Dataset` objects ```python batch_size = 1024 def create_dataset(targets, contexts, labels, weights, batch_size): inputs = { "target": targets, "context": contexts, } dataset = tf.data.Dataset.from_tensor_slices((inputs, labels, weights)) dataset = dataset.shuffle(buffer_size=batch_size * 2) dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(tf.data.AUTOTUNE) return dataset dataset = create_dataset( targets=targets, contexts=contexts, labels=labels, weights=weights, batch_size=batch_size, )

Train the skip-gram model

Our skip-gram is a simple binary classification model that works as follows:

  1. An embedding is looked up for the target movie.

  2. An embedding is looked up for the context movie.

  3. The dot product is computed between these two embeddings.

  4. The result (after a sigmoid activation) is compared to the label.

  5. A binary crossentropy loss is used.

learning_rate = 0.001 embedding_dim = 50 num_epochs = 10

Implement the model

def create_model(vocabulary_size, embedding_dim): inputs = { "target": layers.Input(name="target", shape=(), dtype="int32"), "context": layers.Input(name="context", shape=(), dtype="int32"), } # Initialize item embeddings. embed_item = layers.Embedding( input_dim=vocabulary_size, output_dim=embedding_dim, embeddings_initializer="he_normal", embeddings_regularizer=keras.regularizers.l2(1e-6), name="item_embeddings", ) # Lookup embeddings for target. target_embeddings = embed_item(inputs["target"]) # Lookup embeddings for context. context_embeddings = embed_item(inputs["context"]) # Compute dot similarity between target and context embeddings. logits = layers.Dot(axes=1, normalize=False, name="dot_similarity")( [target_embeddings, context_embeddings] ) # Create the model. model = keras.Model(inputs=inputs, outputs=logits) return model

Train the model

We instantiate the model and compile it.

model = create_model(len(vocabulary), embedding_dim) model.compile( optimizer=keras.optimizers.Adam(learning_rate), loss=keras.losses.BinaryCrossentropy(from_logits=True), )

Let's plot the model.

keras.utils.plot_model( model, show_shapes=True, show_dtype=True, show_layer_names=True, )

png

Now we train the model on the dataset.

history = model.fit(dataset, epochs=num_epochs)
``` Epoch 1/10 860/860 [==============================] - 5s 5ms/step - loss: 2.4527 Epoch 2/10 860/860 [==============================] - 4s 5ms/step - loss: 2.3431 Epoch 3/10 860/860 [==============================] - 4s 4ms/step - loss: 2.3351 Epoch 4/10 860/860 [==============================] - 4s 4ms/step - loss: 2.3301 Epoch 5/10 860/860 [==============================] - 4s 5ms/step - loss: 2.3259 Epoch 6/10 860/860 [==============================] - 4s 4ms/step - loss: 2.3223 Epoch 7/10 860/860 [==============================] - 4s 5ms/step - loss: 2.3191 Epoch 8/10 860/860 [==============================] - 4s 4ms/step - loss: 2.3160 Epoch 9/10 860/860 [==============================] - 4s 4ms/step - loss: 2.3130 Epoch 10/10 860/860 [==============================] - 4s 5ms/step - loss: 2.3104
</div> Finally we plot the learning history. ```python plt.plot(history.history["loss"]) plt.ylabel("loss") plt.xlabel("epoch") plt.show()

png


Analyze the learnt embeddings.

movie_embeddings = model.get_layer("item_embeddings").get_weights()[0] print("Embeddings shape:", movie_embeddings.shape)
``` Embeddings shape: (1406, 50)
</div> ### Find related movies Define a list with some movies called `query_movies`. ```python query_movies = [ "Matrix, The (1999)", "Star Wars: Episode IV - A New Hope (1977)", "Lion King, The (1994)", "Terminator 2: Judgment Day (1991)", "Godfather, The (1972)", ]

Get the embeddings of the movies in query_movies.

query_embeddings = [] for movie_title in query_movies: movieId = get_movie_id_by_title(movie_title) token_id = vocabulary_lookup[movieId] movie_embedding = movie_embeddings[token_id] query_embeddings.append(movie_embedding) query_embeddings = np.array(query_embeddings)

Compute the consine similarity between the embeddings of query_movies and all the other movies, then pick the top k for each.

similarities = tf.linalg.matmul( tf.math.l2_normalize(query_embeddings), tf.math.l2_normalize(movie_embeddings), transpose_b=True, ) _, indices = tf.math.top_k(similarities, k=5) indices = indices.numpy().tolist()

Display the top related movies in query_movies.

for idx, title in enumerate(query_movies): print(title) print("".rjust(len(title), "-")) similar_tokens = indices[idx] for token in similar_tokens: similar_movieId = vocabulary[token] similar_title = get_movie_title_by_id(similar_movieId) print(f"- {similar_title}") print()
``` Matrix, The (1999) ------------------ - Matrix, The (1999) - Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981) - Schindler's List (1993) - Star Wars: Episode IV - A New Hope (1977) - Lord of the Rings: The Fellowship of the Ring, The (2001) ```
``` Star Wars: Episode IV - A New Hope (1977) ----------------------------------------- - Star Wars: Episode IV - A New Hope (1977) - Schindler's List (1993) - Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981) - Matrix, The (1999) - Pulp Fiction (1994) ```
``` Lion King, The (1994) --------------------- - Lion King, The (1994) - Jurassic Park (1993) - Independence Day (a.k.a. ID4) (1996) - Beauty and the Beast (1991) - Mrs. Doubtfire (1993) ```
``` Terminator 2: Judgment Day (1991) --------------------------------- - Schindler's List (1993) - Jurassic Park (1993) - Terminator 2: Judgment Day (1991) - Star Wars: Episode IV - A New Hope (1977) - Back to the Future (1985) ```
``` Godfather, The (1972) --------------------- - Apocalypse Now (1979) - Fargo (1996) - Godfather, The (1972) - Schindler's List (1993) - Casablanca (1942) ```

Visualize the embeddings using the Embedding Projector

import io out_v = io.open("embeddings.tsv", "w", encoding="utf-8") out_m = io.open("metadata.tsv", "w", encoding="utf-8") for idx, movie_id in enumerate(vocabulary[1:]): movie_title = list(movies[movies.movieId == movie_id].title)[0] vector = movie_embeddings[idx] out_v.write("\t".join([str(x) for x in vector]) + "\n") out_m.write(movie_title + "\n") out_v.close() out_m.close()

Download the embeddings.tsv and metadata.tsv to analyze the obtained embeddings in the Embedding Projector.

Example available on HuggingFace

Trained ModelDemo
Generic badgeGeneric badge