Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/nlp/ipynb/lstm_seq2seq.ipynb
3508 views
Kernel: Python 3

Character-level recurrent sequence-to-sequence model

Author: fchollet
Date created: 2017/09/29
Last modified: 2023/11/22
Description: Character-level recurrent sequence-to-sequence model.

Introduction

This example demonstrates how to implement a basic character-level recurrent sequence-to-sequence model. We apply it to translating short English sentences into short French sentences, character-by-character. Note that it is fairly unusual to do character-level machine translation, as word-level models are more common in this domain.

Summary of the algorithm

  • We start with input sequences from a domain (e.g. English sentences) and corresponding target sequences from another domain (e.g. French sentences).

  • An encoder LSTM turns input sequences to 2 state vectors (we keep the last LSTM state and discard the outputs).

  • A decoder LSTM is trained to turn the target sequences into the same sequence but offset by one timestep in the future, a training process called "teacher forcing" in this context. It uses as initial state the state vectors from the encoder. Effectively, the decoder learns to generate targets[t+1...] given targets[...t], conditioned on the input sequence.

  • In inference mode, when we want to decode unknown input sequences, we:

    • Encode the input sequence into state vectors

    • Start with a target sequence of size 1 (just the start-of-sequence character)

    • Feed the state vectors and 1-char target sequence to the decoder to produce predictions for the next character

    • Sample the next character using these predictions (we simply use argmax).

    • Append the sampled character to the target sequence

    • Repeat until we generate the end-of-sequence character or we hit the character limit.

Setup

import numpy as np import keras import os from pathlib import Path

Download the data

fpath = keras.utils.get_file(origin="http://www.manythings.org/anki/fra-eng.zip") dirpath = Path(fpath).parent.absolute() os.system(f"unzip -q {fpath} -d {dirpath}")

Configuration

batch_size = 64 # Batch size for training. epochs = 100 # Number of epochs to train for. latent_dim = 256 # Latent dimensionality of the encoding space. num_samples = 10000 # Number of samples to train on. # Path to the data txt file on disk. data_path = os.path.join(dirpath, "fra.txt")

Prepare the data

# Vectorize the data. input_texts = [] target_texts = [] input_characters = set() target_characters = set() with open(data_path, "r", encoding="utf-8") as f: lines = f.read().split("\n") for line in lines[: min(num_samples, len(lines) - 1)]: input_text, target_text, _ = line.split("\t") # We use "tab" as the "start sequence" character # for the targets, and "\n" as "end sequence" character. target_text = "\t" + target_text + "\n" input_texts.append(input_text) target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print("Number of samples:", len(input_texts)) print("Number of unique input tokens:", num_encoder_tokens) print("Number of unique output tokens:", num_decoder_tokens) print("Max sequence length for inputs:", max_encoder_seq_length) print("Max sequence length for outputs:", max_decoder_seq_length) input_token_index = dict([(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict([(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype="float32", ) decoder_input_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32", ) decoder_target_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32", ) for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1.0 encoder_input_data[i, t + 1 :, input_token_index[" "]] = 1.0 for t, char in enumerate(target_text): # decoder_target_data is ahead of decoder_input_data by one timestep decoder_input_data[i, t, target_token_index[char]] = 1.0 if t > 0: # decoder_target_data will be ahead by one timestep # and will not include the start character. decoder_target_data[i, t - 1, target_token_index[char]] = 1.0 decoder_input_data[i, t + 1 :, target_token_index[" "]] = 1.0 decoder_target_data[i, t:, target_token_index[" "]] = 1.0

Build the model

# Define an input sequence and process it. encoder_inputs = keras.Input(shape=(None, num_encoder_tokens)) encoder = keras.layers.LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = keras.Input(shape=(None, num_decoder_tokens)) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states) decoder_dense = keras.layers.Dense(num_decoder_tokens, activation="softmax") decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)

Train the model

model.compile( optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"] ) model.fit( [encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2, ) # Save model model.save("s2s_model.keras")

Run inference (sampling)

  1. encode input and retrieve initial decoder state

  2. run one step of decoder with this initial state and a "start of sequence" token as target. Output will be the next target token.

  3. Repeat with the current target token and current states

# Define sampling models # Restore the model and construct the encoder and decoder. model = keras.models.load_model("s2s_model.keras") encoder_inputs = model.input[0] # input_1 encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1 encoder_states = [state_h_enc, state_c_enc] encoder_model = keras.Model(encoder_inputs, encoder_states) decoder_inputs = model.input[1] # input_2 decoder_state_input_h = keras.Input(shape=(latent_dim,)) decoder_state_input_c = keras.Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_lstm = model.layers[3] decoder_outputs, state_h_dec, state_c_dec = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs ) decoder_states = [state_h_dec, state_c_dec] decoder_dense = model.layers[4] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = keras.Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states ) # Reverse-lookup token index to decode sequences back to # something readable. reverse_input_char_index = dict((i, char) for char, i in input_token_index.items()) reverse_target_char_index = dict((i, char) for char, i in target_token_index.items()) def decode_sequence(input_seq): # Encode the input as state vectors. states_value = encoder_model.predict(input_seq, verbose=0) # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens)) # Populate the first character of target sequence with the start character. target_seq[0, 0, target_token_index["\t"]] = 1.0 # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sentence = "" while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value, verbose=0 ) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # Exit condition: either hit max length # or find stop character. if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length: stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1.0 # Update states states_value = [h, c] return decoded_sentence

You can now generate decoded sentences as such:

for seq_index in range(20): # Take one sequence (part of the training set) # for trying out decoding. input_seq = encoder_input_data[seq_index : seq_index + 1] decoded_sentence = decode_sequence(input_seq) print("-") print("Input sentence:", input_texts[seq_index]) print("Decoded sentence:", decoded_sentence)