Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/nlp/ipynb/masked_language_modeling.ipynb
3508 views
Kernel: Python 3

End-to-end Masked Language Modeling with BERT

Author: Ankur Singh
Date created: 2020/09/18
Last modified: 2024/03/15
Description: Implement a Masked Language Model (MLM) with BERT and fine-tune it on the IMDB Reviews dataset.

Introduction

Masked Language Modeling is a fill-in-the-blank task, where a model uses the context words surrounding a mask token to try to predict what the masked word should be.

For an input that contains one or more mask tokens, the model will generate the most likely substitution for each.

Example:

  • Input: "I have watched this [MASK] and it was awesome."

  • Output: "I have watched this movie and it was awesome."

Masked language modeling is a great way to train a language model in a self-supervised setting (without human-annotated labels). Such a model can then be fine-tuned to accomplish various supervised NLP tasks.

This example teaches you how to build a BERT model from scratch, train it with the masked language modeling task, and then fine-tune this model on a sentiment classification task.

We will use the Keras TextVectorization and MultiHeadAttention layers to create a BERT Transformer-Encoder network architecture.

Note: This example should be run with tf-nightly.

Setup

Install tf-nightly via pip install tf-nightly.

import os os.environ["KERAS_BACKEND"] = "torch" # or jax, or tensorflow import keras_hub import keras from keras import layers from keras.layers import TextVectorization from dataclasses import dataclass import pandas as pd import numpy as np import glob import re from pprint import pprint

Set-up Configuration

@dataclass class Config: MAX_LEN = 256 BATCH_SIZE = 32 LR = 0.001 VOCAB_SIZE = 30000 EMBED_DIM = 128 NUM_HEAD = 8 # used in bert model FF_DIM = 128 # used in bert model NUM_LAYERS = 1 config = Config()

Load the data

We will first download the IMDB data and load into a Pandas dataframe.

!curl -O https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz !tar -xf aclImdb_v1.tar.gz
def get_text_list_from_files(files): text_list = [] for name in files: with open(name) as f: for line in f: text_list.append(line) return text_list def get_data_from_text_files(folder_name): pos_files = glob.glob("aclImdb/" + folder_name + "/pos/*.txt") pos_texts = get_text_list_from_files(pos_files) neg_files = glob.glob("aclImdb/" + folder_name + "/neg/*.txt") neg_texts = get_text_list_from_files(neg_files) df = pd.DataFrame( { "review": pos_texts + neg_texts, "sentiment": [0] * len(pos_texts) + [1] * len(neg_texts), } ) df = df.sample(len(df)).reset_index(drop=True) return df train_df = get_data_from_text_files("train") test_df = get_data_from_text_files("test") all_data = pd.concat([train_df, test_df], ignore_index=True)

Dataset preparation

We will use the TextVectorization layer to vectorize the text into integer token ids. It transforms a batch of strings into either a sequence of token indices (one sample = 1D array of integer token indices, in order) or a dense representation (one sample = 1D array of float values encoding an unordered set of tokens).

Below, we define 3 preprocessing functions.

  1. The get_vectorize_layer function builds the TextVectorization layer.

  2. The encode function encodes raw text into integer token ids.

  3. The get_masked_input_and_labels function will mask input token ids. It masks 15% of all input tokens in each sequence at random.

# For data pre-processing and tf.data.Dataset import tensorflow as tf def custom_standardization(input_data): lowercase = tf.strings.lower(input_data) stripped_html = tf.strings.regex_replace(lowercase, "<br />", " ") return tf.strings.regex_replace( stripped_html, "[%s]" % re.escape("!#$%&'()*+,-./:;<=>?@\^_`{|}~"), "" ) def get_vectorize_layer(texts, vocab_size, max_seq, special_tokens=["[MASK]"]): """Build Text vectorization layer Args: texts (list): List of string i.e input texts vocab_size (int): vocab size max_seq (int): Maximum sequence length. special_tokens (list, optional): List of special tokens. Defaults to ['[MASK]']. Returns: layers.Layer: Return TextVectorization Keras Layer """ vectorize_layer = TextVectorization( max_tokens=vocab_size, output_mode="int", standardize=custom_standardization, output_sequence_length=max_seq, ) vectorize_layer.adapt(texts) # Insert mask token in vocabulary vocab = vectorize_layer.get_vocabulary() vocab = vocab[2 : vocab_size - len(special_tokens)] + ["[mask]"] vectorize_layer.set_vocabulary(vocab) return vectorize_layer vectorize_layer = get_vectorize_layer( all_data.review.values.tolist(), config.VOCAB_SIZE, config.MAX_LEN, special_tokens=["[mask]"], ) # Get mask token id for masked language model mask_token_id = vectorize_layer(["[mask]"]).numpy()[0][0] def encode(texts): encoded_texts = vectorize_layer(texts) return encoded_texts.numpy() def get_masked_input_and_labels(encoded_texts): # 15% BERT masking inp_mask = np.random.rand(*encoded_texts.shape) < 0.15 # Do not mask special tokens inp_mask[encoded_texts <= 2] = False # Set targets to -1 by default, it means ignore labels = -1 * np.ones(encoded_texts.shape, dtype=int) # Set labels for masked tokens labels[inp_mask] = encoded_texts[inp_mask] # Prepare input encoded_texts_masked = np.copy(encoded_texts) # Set input to [MASK] which is the last token for the 90% of tokens # This means leaving 10% unchanged inp_mask_2mask = inp_mask & (np.random.rand(*encoded_texts.shape) < 0.90) encoded_texts_masked[inp_mask_2mask] = ( mask_token_id # mask token is the last in the dict ) # Set 10% to a random token inp_mask_2random = inp_mask_2mask & (np.random.rand(*encoded_texts.shape) < 1 / 9) encoded_texts_masked[inp_mask_2random] = np.random.randint( 3, mask_token_id, inp_mask_2random.sum() ) # Prepare sample_weights to pass to .fit() method sample_weights = np.ones(labels.shape) sample_weights[labels == -1] = 0 # y_labels would be same as encoded_texts i.e input tokens y_labels = np.copy(encoded_texts) return encoded_texts_masked, y_labels, sample_weights # We have 25000 examples for training x_train = encode(train_df.review.values) # encode reviews with vectorizer y_train = train_df.sentiment.values train_classifier_ds = ( tf.data.Dataset.from_tensor_slices((x_train, y_train)) .shuffle(1000) .batch(config.BATCH_SIZE) ) # We have 25000 examples for testing x_test = encode(test_df.review.values) y_test = test_df.sentiment.values test_classifier_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch( config.BATCH_SIZE ) # Dataset for end to end model input (will be used at the end) test_raw_classifier_ds = test_df # Prepare data for masked language model x_all_review = encode(all_data.review.values) x_masked_train, y_masked_labels, sample_weights = get_masked_input_and_labels( x_all_review ) mlm_ds = tf.data.Dataset.from_tensor_slices( (x_masked_train, y_masked_labels, sample_weights) ) mlm_ds = mlm_ds.shuffle(1000).batch(config.BATCH_SIZE)

Create BERT model (Pretraining Model) for masked language modeling

We will create a BERT-like pretraining model architecture using the MultiHeadAttention layer. It will take token ids as inputs (including masked tokens) and it will predict the correct ids for the masked input tokens.

def bert_module(query, key, value, i): # Multi headed self-attention attention_output = layers.MultiHeadAttention( num_heads=config.NUM_HEAD, key_dim=config.EMBED_DIM // config.NUM_HEAD, name="encoder_{}_multiheadattention".format(i), )(query, key, value) attention_output = layers.Dropout(0.1, name="encoder_{}_att_dropout".format(i))( attention_output ) attention_output = layers.LayerNormalization( epsilon=1e-6, name="encoder_{}_att_layernormalization".format(i) )(query + attention_output) # Feed-forward layer ffn = keras.Sequential( [ layers.Dense(config.FF_DIM, activation="relu"), layers.Dense(config.EMBED_DIM), ], name="encoder_{}_ffn".format(i), ) ffn_output = ffn(attention_output) ffn_output = layers.Dropout(0.1, name="encoder_{}_ffn_dropout".format(i))( ffn_output ) sequence_output = layers.LayerNormalization( epsilon=1e-6, name="encoder_{}_ffn_layernormalization".format(i) )(attention_output + ffn_output) return sequence_output loss_fn = keras.losses.SparseCategoricalCrossentropy(reduction=None) loss_tracker = keras.metrics.Mean(name="loss") class MaskedLanguageModel(keras.Model): def compute_loss(self, x=None, y=None, y_pred=None, sample_weight=None): loss = loss_fn(y, y_pred, sample_weight) loss_tracker.update_state(loss, sample_weight=sample_weight) return keras.ops.sum(loss) def compute_metrics(self, x, y, y_pred, sample_weight): # Return a dict mapping metric names to current value return {"loss": loss_tracker.result()} @property def metrics(self): # We list our `Metric` objects here so that `reset_states()` can be # called automatically at the start of each epoch # or at the start of `evaluate()`. # If you don't implement this property, you have to call # `reset_states()` yourself at the time of your choosing. return [loss_tracker] def create_masked_language_bert_model(): inputs = layers.Input((config.MAX_LEN,), dtype="int64") word_embeddings = layers.Embedding( config.VOCAB_SIZE, config.EMBED_DIM, name="word_embedding" )(inputs) position_embeddings = keras_hub.layers.PositionEmbedding( sequence_length=config.MAX_LEN )(word_embeddings) embeddings = word_embeddings + position_embeddings encoder_output = embeddings for i in range(config.NUM_LAYERS): encoder_output = bert_module(encoder_output, encoder_output, encoder_output, i) mlm_output = layers.Dense(config.VOCAB_SIZE, name="mlm_cls", activation="softmax")( encoder_output ) mlm_model = MaskedLanguageModel(inputs, mlm_output, name="masked_bert_model") optimizer = keras.optimizers.Adam(learning_rate=config.LR) mlm_model.compile(optimizer=optimizer) return mlm_model id2token = dict(enumerate(vectorize_layer.get_vocabulary())) token2id = {y: x for x, y in id2token.items()} class MaskedTextGenerator(keras.callbacks.Callback): def __init__(self, sample_tokens, top_k=5): self.sample_tokens = sample_tokens self.k = top_k def decode(self, tokens): return " ".join([id2token[t] for t in tokens if t != 0]) def convert_ids_to_tokens(self, id): return id2token[id] def on_epoch_end(self, epoch, logs=None): prediction = self.model.predict(self.sample_tokens) masked_index = np.where(self.sample_tokens == mask_token_id) masked_index = masked_index[1] mask_prediction = prediction[0][masked_index] top_indices = mask_prediction[0].argsort()[-self.k :][::-1] values = mask_prediction[0][top_indices] for i in range(len(top_indices)): p = top_indices[i] v = values[i] tokens = np.copy(sample_tokens[0]) tokens[masked_index[0]] = p result = { "input_text": self.decode(sample_tokens[0].numpy()), "prediction": self.decode(tokens), "probability": v, "predicted mask token": self.convert_ids_to_tokens(p), } pprint(result) sample_tokens = vectorize_layer(["I have watched this [mask] and it was awesome"]) generator_callback = MaskedTextGenerator(sample_tokens.numpy()) bert_masked_model = create_masked_language_bert_model() bert_masked_model.summary()

Train and Save

bert_masked_model.fit(mlm_ds, epochs=5, callbacks=[generator_callback]) bert_masked_model.save("bert_mlm_imdb.keras")

Fine-tune a sentiment classification model

We will fine-tune our self-supervised model on a downstream task of sentiment classification. To do this, let's create a classifier by adding a pooling layer and a Dense layer on top of the pretrained BERT features.

# Load pretrained bert model mlm_model = keras.models.load_model( "bert_mlm_imdb.keras", custom_objects={"MaskedLanguageModel": MaskedLanguageModel} ) pretrained_bert_model = keras.Model( mlm_model.input, mlm_model.get_layer("encoder_0_ffn_layernormalization").output ) # Freeze it pretrained_bert_model.trainable = False def create_classifier_bert_model(): inputs = layers.Input((config.MAX_LEN,), dtype="int64") sequence_output = pretrained_bert_model(inputs) pooled_output = layers.GlobalMaxPooling1D()(sequence_output) hidden_layer = layers.Dense(64, activation="relu")(pooled_output) outputs = layers.Dense(1, activation="sigmoid")(hidden_layer) classifer_model = keras.Model(inputs, outputs, name="classification") optimizer = keras.optimizers.Adam() classifer_model.compile( optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"] ) return classifer_model classifer_model = create_classifier_bert_model() classifer_model.summary() # Train the classifier with frozen BERT stage classifer_model.fit( train_classifier_ds, epochs=5, validation_data=test_classifier_ds, ) # Unfreeze the BERT model for fine-tuning pretrained_bert_model.trainable = True optimizer = keras.optimizers.Adam() classifer_model.compile( optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"] ) classifer_model.fit( train_classifier_ds, epochs=5, validation_data=test_classifier_ds, )

Create an end-to-end model and evaluate it

When you want to deploy a model, it's best if it already includes its preprocessing pipeline, so that you don't have to reimplement the preprocessing logic in your production environment. Let's create an end-to-end model that incorporates the TextVectorization layer inside evalaute method, and let's evaluate. We will pass raw strings as input.

# We create a custom Model to override the evaluate method so # that it first pre-process text data class ModelEndtoEnd(keras.Model): def evaluate(self, inputs): features = encode(inputs.review.values) labels = inputs.sentiment.values test_classifier_ds = ( tf.data.Dataset.from_tensor_slices((features, labels)) .shuffle(1000) .batch(config.BATCH_SIZE) ) return super().evaluate(test_classifier_ds) # Build the model def build(self, input_shape): self.built = True def get_end_to_end(model): inputs = classifer_model.inputs[0] outputs = classifer_model.outputs end_to_end_model = ModelEndtoEnd(inputs, outputs, name="end_to_end_model") optimizer = keras.optimizers.Adam(learning_rate=config.LR) end_to_end_model.compile( optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"] ) return end_to_end_model end_to_end_classification_model = get_end_to_end(classifer_model) # Pass raw text dataframe to the model end_to_end_classification_model.evaluate(test_raw_classifier_ds)