Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/nlp/ipynb/text_classification_with_transformer.ipynb
3508 views
Kernel: Python 3

Text classification with Transformer

Author: Apoorv Nandan
Date created: 2020/05/10
Last modified: 2024/01/18
Description: Implement a Transformer block as a Keras layer and use it for text classification.

Setup

import keras from keras import ops from keras import layers

Implement a Transformer block as a layer

class TransformerBlock(layers.Layer): def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1): super().__init__() self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.ffn = keras.Sequential( [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),] ) self.layernorm1 = layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = layers.LayerNormalization(epsilon=1e-6) self.dropout1 = layers.Dropout(rate) self.dropout2 = layers.Dropout(rate) def call(self, inputs): attn_output = self.att(inputs, inputs) attn_output = self.dropout1(attn_output) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output) return self.layernorm2(out1 + ffn_output)

Implement embedding layer

Two embedding layers, one for tokens, one for token index (positions).

class TokenAndPositionEmbedding(layers.Layer): def __init__(self, maxlen, vocab_size, embed_dim): super().__init__() self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim) self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim) def call(self, x): maxlen = ops.shape(x)[-1] positions = ops.arange(start=0, stop=maxlen, step=1) positions = self.pos_emb(positions) x = self.token_emb(x) return x + positions

Download and prepare dataset

vocab_size = 20000 # Only consider the top 20k words maxlen = 200 # Only consider the first 200 words of each movie review (x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(num_words=vocab_size) print(len(x_train), "Training sequences") print(len(x_val), "Validation sequences") x_train = keras.utils.pad_sequences(x_train, maxlen=maxlen) x_val = keras.utils.pad_sequences(x_val, maxlen=maxlen)

Create classifier model using transformer layer

Transformer layer outputs one vector for each time step of our input sequence. Here, we take the mean across all time steps and use a feed forward network on top of it to classify text.

embed_dim = 32 # Embedding size for each token num_heads = 2 # Number of attention heads ff_dim = 32 # Hidden layer size in feed forward network inside transformer inputs = layers.Input(shape=(maxlen,)) embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim) x = embedding_layer(inputs) transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim) x = transformer_block(x) x = layers.GlobalAveragePooling1D()(x) x = layers.Dropout(0.1)(x) x = layers.Dense(20, activation="relu")(x) x = layers.Dropout(0.1)(x) outputs = layers.Dense(2, activation="softmax")(x) model = keras.Model(inputs=inputs, outputs=outputs)

Train and Evaluate

model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model.fit( x_train, y_train, batch_size=32, epochs=2, validation_data=(x_val, y_val) )