"""
Title: Character-level recurrent sequence-to-sequence model
Author: [fchollet](https://twitter.com/fchollet)
Date created: 2017/09/29
Last modified: 2023/11/22
Description: Character-level recurrent sequence-to-sequence model.
Accelerator: GPU
"""
"""
## Introduction
This example demonstrates how to implement a basic character-level
recurrent sequence-to-sequence model. We apply it to translating
short English sentences into short French sentences,
character-by-character. Note that it is fairly unusual to
do character-level machine translation, as word-level
models are more common in this domain.
**Summary of the algorithm**
- We start with input sequences from a domain (e.g. English sentences)
and corresponding target sequences from another domain
(e.g. French sentences).
- An encoder LSTM turns input sequences to 2 state vectors
(we keep the last LSTM state and discard the outputs).
- A decoder LSTM is trained to turn the target sequences into
the same sequence but offset by one timestep in the future,
a training process called "teacher forcing" in this context.
It uses as initial state the state vectors from the encoder.
Effectively, the decoder learns to generate `targets[t+1...]`
given `targets[...t]`, conditioned on the input sequence.
- In inference mode, when we want to decode unknown input sequences, we:
- Encode the input sequence into state vectors
- Start with a target sequence of size 1
(just the start-of-sequence character)
- Feed the state vectors and 1-char target sequence
to the decoder to produce predictions for the next character
- Sample the next character using these predictions
(we simply use argmax).
- Append the sampled character to the target sequence
- Repeat until we generate the end-of-sequence character or we
hit the character limit.
"""
"""
## Setup
"""
import numpy as np
import keras
import os
from pathlib import Path
"""
## Download the data
"""
fpath = keras.utils.get_file(origin="http://www.manythings.org/anki/fra-eng.zip")
dirpath = Path(fpath).parent.absolute()
os.system(f"unzip -q {fpath} -d {dirpath}")
"""
## Configuration
"""
batch_size = 64
epochs = 100
latent_dim = 256
num_samples = 10000
data_path = os.path.join(dirpath, "fra.txt")
"""
## Prepare the data
"""
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, "r", encoding="utf-8") as f:
lines = f.read().split("\n")
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text, _ = line.split("\t")
target_text = "\t" + target_text + "\n"
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])
print("Number of samples:", len(input_texts))
print("Number of unique input tokens:", num_encoder_tokens)
print("Number of unique output tokens:", num_decoder_tokens)
print("Max sequence length for inputs:", max_encoder_seq_length)
print("Max sequence length for outputs:", max_decoder_seq_length)
input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])
encoder_input_data = np.zeros(
(len(input_texts), max_encoder_seq_length, num_encoder_tokens),
dtype="float32",
)
decoder_input_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype="float32",
)
decoder_target_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype="float32",
)
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
for t, char in enumerate(input_text):
encoder_input_data[i, t, input_token_index[char]] = 1.0
encoder_input_data[i, t + 1 :, input_token_index[" "]] = 1.0
for t, char in enumerate(target_text):
decoder_input_data[i, t, target_token_index[char]] = 1.0
if t > 0:
decoder_target_data[i, t - 1, target_token_index[char]] = 1.0
decoder_input_data[i, t + 1 :, target_token_index[" "]] = 1.0
decoder_target_data[i, t:, target_token_index[" "]] = 1.0
"""
## Build the model
"""
encoder_inputs = keras.Input(shape=(None, num_encoder_tokens))
encoder = keras.layers.LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
decoder_inputs = keras.Input(shape=(None, num_decoder_tokens))
decoder_lstm = keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = keras.layers.Dense(num_decoder_tokens, activation="softmax")
decoder_outputs = decoder_dense(decoder_outputs)
model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)
"""
## Train the model
"""
model.compile(
optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]
)
model.fit(
[encoder_input_data, decoder_input_data],
decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2,
)
model.save("s2s_model.keras")
"""
## Run inference (sampling)
1. encode input and retrieve initial decoder state
2. run one step of decoder with this initial state
and a "start of sequence" token as target.
Output will be the next target token.
3. Repeat with the current target token and current states
"""
model = keras.models.load_model("s2s_model.keras")
encoder_inputs = model.input[0]
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)
decoder_inputs = model.input[1]
decoder_state_input_h = keras.Input(shape=(latent_dim,))
decoder_state_input_c = keras.Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
[decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())
def decode_sequence(input_seq):
states_value = encoder_model.predict(input_seq, verbose=0)
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, target_token_index["\t"]] = 1.0
stop_condition = False
decoded_sentence = ""
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value, verbose=0
)
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
stop_condition = True
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.0
states_value = [h, c]
return decoded_sentence
"""
You can now generate decoded sentences as such:
"""
for seq_index in range(20):
input_seq = encoder_input_data[seq_index : seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print("-")
print("Input sentence:", input_texts[seq_index])
print("Decoded sentence:", decoded_sentence)