"""
Title: Named Entity Recognition using Transformers
Author: [Varun Singh](https://www.linkedin.com/in/varunsingh2/)
Date created: 2021/06/23
Last modified: 2024/04/05
Description: NER using the Transformers and data from CoNLL 2003 shared task.
Accelerator: GPU
Converted to Keras 3 by: [Sitam Meur](https://github.com/sitamgithub-MSIT)
"""
"""
## Introduction
Named Entity Recognition (NER) is the process of identifying named entities in text.
Example of named entities are: "Person", "Location", "Organization", "Dates" etc. NER is
essentially a token classification task where every token is classified into one or more
predetermined categories.
In this exercise, we will train a simple Transformer based model to perform NER. We will
be using the data from CoNLL 2003 shared task. For more information about the dataset,
please visit [the dataset website](https://www.clips.uantwerpen.be/conll2003/ner/).
However, since obtaining this data requires an additional step of getting a free license, we will be using
HuggingFace's datasets library which contains a processed version of this dataset.
"""
"""
## Install the open source datasets library from HuggingFace
We also download the script used to evaluate NER models.
"""
"""shell
pip3 install datasets
wget https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py
"""
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
from keras import ops
import numpy as np
import tensorflow as tf
from keras import layers
from datasets import load_dataset
from collections import Counter
from conlleval import evaluate
"""
We will be using the transformer implementation from this fantastic
[example](https://keras.io/examples/nlp/text_classification_with_transformer/).
Let's start by defining a `TransformerBlock` layer:
"""
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super().__init__()
self.att = keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.ffn = keras.Sequential(
[
keras.layers.Dense(ff_dim, activation="relu"),
keras.layers.Dense(embed_dim),
]
)
self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = keras.layers.Dropout(rate)
self.dropout2 = keras.layers.Dropout(rate)
def call(self, inputs, training=False):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
"""
Next, let's define a `TokenAndPositionEmbedding` layer:
"""
class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, embed_dim):
super().__init__()
self.token_emb = keras.layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.pos_emb = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
def call(self, inputs):
maxlen = ops.shape(inputs)[-1]
positions = ops.arange(start=0, stop=maxlen, step=1)
position_embeddings = self.pos_emb(positions)
token_embeddings = self.token_emb(inputs)
return token_embeddings + position_embeddings
"""
## Build the NER model class as a `keras.Model` subclass
"""
class NERModel(keras.Model):
def __init__(
self, num_tags, vocab_size, maxlen=128, embed_dim=32, num_heads=2, ff_dim=32
):
super().__init__()
self.embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
self.transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
self.dropout1 = layers.Dropout(0.1)
self.ff = layers.Dense(ff_dim, activation="relu")
self.dropout2 = layers.Dropout(0.1)
self.ff_final = layers.Dense(num_tags, activation="softmax")
def call(self, inputs, training=False):
x = self.embedding_layer(inputs)
x = self.transformer_block(x)
x = self.dropout1(x, training=training)
x = self.ff(x)
x = self.dropout2(x, training=training)
x = self.ff_final(x)
return x
"""
## Load the CoNLL 2003 dataset from the datasets library and process it
"""
conll_data = load_dataset("conll2003")
"""
We will export this data to a tab-separated file format which will be easy to read as a
`tf.data.Dataset` object.
"""
def export_to_file(export_file_path, data):
with open(export_file_path, "w") as f:
for record in data:
ner_tags = record["ner_tags"]
tokens = record["tokens"]
if len(tokens) > 0:
f.write(
str(len(tokens))
+ "\t"
+ "\t".join(tokens)
+ "\t"
+ "\t".join(map(str, ner_tags))
+ "\n"
)
os.mkdir("data")
export_to_file("./data/conll_train.txt", conll_data["train"])
export_to_file("./data/conll_val.txt", conll_data["validation"])
"""
## Make the NER label lookup table
NER labels are usually provided in IOB, IOB2 or IOBES formats. Checkout this link for
more information:
[Wikipedia](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging))
Note that we start our label numbering from 1 since 0 will be reserved for padding. We
have a total of 10 labels: 9 from the NER dataset and one for padding.
"""
def make_tag_lookup_table():
iob_labels = ["B", "I"]
ner_labels = ["PER", "ORG", "LOC", "MISC"]
all_labels = [(label1, label2) for label2 in ner_labels for label1 in iob_labels]
all_labels = ["-".join([a, b]) for a, b in all_labels]
all_labels = ["[PAD]", "O"] + all_labels
return dict(zip(range(0, len(all_labels) + 1), all_labels))
mapping = make_tag_lookup_table()
print(mapping)
"""
Get a list of all tokens in the training dataset. This will be used to create the
vocabulary.
"""
all_tokens = sum(conll_data["train"]["tokens"], [])
all_tokens_array = np.array(list(map(str.lower, all_tokens)))
counter = Counter(all_tokens_array)
print(len(counter))
num_tags = len(mapping)
vocab_size = 20000
vocabulary = [token for token, count in counter.most_common(vocab_size - 2)]
lookup_layer = keras.layers.StringLookup(vocabulary=vocabulary)
"""
Create 2 new `Dataset` objects from the training and validation data
"""
train_data = tf.data.TextLineDataset("./data/conll_train.txt")
val_data = tf.data.TextLineDataset("./data/conll_val.txt")
"""
Print out one line to make sure it looks good. The first record in the line is the number of tokens.
After that we will have all the tokens followed by all the ner tags.
"""
print(list(train_data.take(1).as_numpy_iterator()))
"""
We will be using the following map function to transform the data in the dataset:
"""
def map_record_to_training_data(record):
record = tf.strings.split(record, sep="\t")
length = tf.strings.to_number(record[0], out_type=tf.int32)
tokens = record[1 : length + 1]
tags = record[length + 1 :]
tags = tf.strings.to_number(tags, out_type=tf.int64)
tags += 1
return tokens, tags
def lowercase_and_convert_to_ids(tokens):
tokens = tf.strings.lower(tokens)
return lookup_layer(tokens)
batch_size = 32
train_dataset = (
train_data.map(map_record_to_training_data)
.map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
.padded_batch(batch_size)
)
val_dataset = (
val_data.map(map_record_to_training_data)
.map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
.padded_batch(batch_size)
)
ner_model = NERModel(num_tags, vocab_size, embed_dim=32, num_heads=4, ff_dim=64)
"""
We will be using a custom loss function that will ignore the loss from padded tokens.
"""
class CustomNonPaddingTokenLoss(keras.losses.Loss):
def __init__(self, name="custom_ner_loss"):
super().__init__(name=name)
def call(self, y_true, y_pred):
loss_fn = keras.losses.SparseCategoricalCrossentropy(
from_logits=False, reduction=None
)
loss = loss_fn(y_true, y_pred)
mask = ops.cast((y_true > 0), dtype="float32")
loss = loss * mask
return ops.sum(loss) / ops.sum(mask)
loss = CustomNonPaddingTokenLoss()
"""
## Compile and fit the model
"""
tf.config.run_functions_eagerly(True)
ner_model.compile(optimizer="adam", loss=loss)
ner_model.fit(train_dataset, epochs=10)
def tokenize_and_convert_to_ids(text):
tokens = text.split()
return lowercase_and_convert_to_ids(tokens)
sample_input = tokenize_and_convert_to_ids(
"eu rejects german call to boycott british lamb"
)
sample_input = ops.reshape(sample_input, shape=[1, -1])
print(sample_input)
output = ner_model.predict(sample_input)
prediction = np.argmax(output, axis=-1)[0]
prediction = [mapping[i] for i in prediction]
print(prediction)
"""
## Metrics calculation
Here is a function to calculate the metrics. The function calculates F1 score for the
overall NER dataset as well as individual scores for each NER tag.
"""
def calculate_metrics(dataset):
all_true_tag_ids, all_predicted_tag_ids = [], []
for x, y in dataset:
output = ner_model.predict(x, verbose=0)
predictions = ops.argmax(output, axis=-1)
predictions = ops.reshape(predictions, [-1])
true_tag_ids = ops.reshape(y, [-1])
mask = (true_tag_ids > 0) & (predictions > 0)
true_tag_ids = true_tag_ids[mask]
predicted_tag_ids = predictions[mask]
all_true_tag_ids.append(true_tag_ids)
all_predicted_tag_ids.append(predicted_tag_ids)
all_true_tag_ids = np.concatenate(all_true_tag_ids)
all_predicted_tag_ids = np.concatenate(all_predicted_tag_ids)
predicted_tags = [mapping[tag] for tag in all_predicted_tag_ids]
real_tags = [mapping[tag] for tag in all_true_tag_ids]
evaluate(real_tags, predicted_tags)
calculate_metrics(val_dataset)
"""
## Conclusions
In this exercise, we created a simple transformer based named entity recognition model.
We trained it on the CoNLL 2003 shared task data and got an overall F1 score of around 70%.
State of the art NER models fine-tuned on pretrained models such as BERT or ELECTRA can easily
get much higher F1 score -between 90-95% on this dataset owing to the inherent knowledge
of words as part of the pretraining process and the usage of subword tokenization.
You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/ner-with-transformers)
and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/ner_with_transformers)."""