Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/timeseries/md/timeseries_anomaly_detection.md
3508 views

Timeseries anomaly detection using an Autoencoder

Author: pavithrasv
Date created: 2020/05/31
Last modified: 2020/05/31
Description: Detect anomalies in a timeseries using an Autoencoder.

View in Colab GitHub source


Introduction

This script demonstrates how you can use a reconstruction convolutional autoencoder model to detect anomalies in timeseries data.


Setup

import numpy as np import pandas as pd import keras from keras import layers from matplotlib import pyplot as plt

Load the data

We will use the Numenta Anomaly Benchmark(NAB) dataset. It provides artificial timeseries data containing labeled anomalous periods of behavior. Data are ordered, timestamped, single-valued metrics.

We will use the art_daily_small_noise.csv file for training and the art_daily_jumpsup.csv file for testing. The simplicity of this dataset allows us to demonstrate anomaly detection effectively.

master_url_root = "https://raw.githubusercontent.com/numenta/NAB/master/data/" df_small_noise_url_suffix = "artificialNoAnomaly/art_daily_small_noise.csv" df_small_noise_url = master_url_root + df_small_noise_url_suffix df_small_noise = pd.read_csv( df_small_noise_url, parse_dates=True, index_col="timestamp" ) df_daily_jumpsup_url_suffix = "artificialWithAnomaly/art_daily_jumpsup.csv" df_daily_jumpsup_url = master_url_root + df_daily_jumpsup_url_suffix df_daily_jumpsup = pd.read_csv( df_daily_jumpsup_url, parse_dates=True, index_col="timestamp" )

Quick look at the data

print(df_small_noise.head()) print(df_daily_jumpsup.head())
``` value timestamp 2014-04-01 00:00:00 18.324919 2014-04-01 00:05:00 21.970327 2014-04-01 00:10:00 18.624806 2014-04-01 00:15:00 21.953684 2014-04-01 00:20:00 21.909120 value timestamp 2014-04-01 00:00:00 19.761252 2014-04-01 00:05:00 20.500833 2014-04-01 00:10:00 19.961641 2014-04-01 00:15:00 21.490266 2014-04-01 00:20:00 20.187739
</div> --- ## Visualize the data ### Timeseries data without anomalies We will use the following data for training. ```python fig, ax = plt.subplots() df_small_noise.plot(legend=False, ax=ax) plt.show()

png

Timeseries data with anomalies

We will use the following data for testing and see if the sudden jump up in the data is detected as an anomaly.

fig, ax = plt.subplots() df_daily_jumpsup.plot(legend=False, ax=ax) plt.show()

png


Prepare training data

Get data values from the training timeseries data file and normalize the value data. We have a value for every 5 mins for 14 days.

  • 24 * 60 / 5 = 288 timesteps per day

  • 288 * 14 = 4032 data points in total

# Normalize and save the mean and std we get, # for normalizing test data. training_mean = df_small_noise.mean() training_std = df_small_noise.std() df_training_value = (df_small_noise - training_mean) / training_std print("Number of training samples:", len(df_training_value))
``` Number of training samples: 4032
</div> ### Create sequences Create sequences combining `TIME_STEPS` contiguous data values from the training data. ```python TIME_STEPS = 288 # Generated training sequences for use in the model. def create_sequences(values, time_steps=TIME_STEPS): output = [] for i in range(len(values) - time_steps + 1): output.append(values[i : (i + time_steps)]) return np.stack(output) x_train = create_sequences(df_training_value.values) print("Training input shape: ", x_train.shape)
``` Training input shape: (3745, 288, 1)
</div> --- ## Build a model We will build a convolutional reconstruction autoencoder model. The model will take input of shape `(batch_size, sequence_length, num_features)` and return output of the same shape. In this case, `sequence_length` is 288 and `num_features` is 1. ```python model = keras.Sequential( [ layers.Input(shape=(x_train.shape[1], x_train.shape[2])), layers.Conv1D( filters=32, kernel_size=7, padding="same", strides=2, activation="relu", ), layers.Dropout(rate=0.2), layers.Conv1D( filters=16, kernel_size=7, padding="same", strides=2, activation="relu", ), layers.Conv1DTranspose( filters=16, kernel_size=7, padding="same", strides=2, activation="relu", ), layers.Dropout(rate=0.2), layers.Conv1DTranspose( filters=32, kernel_size=7, padding="same", strides=2, activation="relu", ), layers.Conv1DTranspose(filters=1, kernel_size=7, padding="same"), ] ) model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse") model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv1d (Conv1D)                 │ (None, 144, 32)           │        256 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (None, 144, 32)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_1 (Conv1D)               │ (None, 72, 16)            │      3,600 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_transpose                │ (None, 144, 16)           │      1,808 │
│ (Conv1DTranspose)               │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_1 (Dropout)             │ (None, 144, 16)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_transpose_1              │ (None, 288, 32)           │      3,616 │
│ (Conv1DTranspose)               │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_transpose_2              │ (None, 288, 1)            │        225 │
│ (Conv1DTranspose)               │                           │            │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 9,505 (37.13 KB)
 Trainable params: 9,505 (37.13 KB)
 Non-trainable params: 0 (0.00 B)

Train the model

Please note that we are using x_train as both the input and the target since this is a reconstruction model.

history = model.fit( x_train, x_train, epochs=50, batch_size=128, validation_split=0.1, callbacks=[ keras.callbacks.EarlyStopping(monitor="val_loss", patience=5, mode="min") ], )
``` Epoch 1/50 26/27 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.8419

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1700346169.474466 1961179 device_compiler.h:187] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.

27/27 ━━━━━━━━━━━━━━━━━━━━ 10s 187ms/step - loss: 0.8262 - val_loss: 0.2280 Epoch 2/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.1485 - val_loss: 0.0513 Epoch 3/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0659 - val_loss: 0.0389 Epoch 4/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0563 - val_loss: 0.0341 Epoch 5/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0489 - val_loss: 0.0298 Epoch 6/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0434 - val_loss: 0.0272 Epoch 7/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0386 - val_loss: 0.0258 Epoch 8/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0349 - val_loss: 0.0241 Epoch 9/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0319 - val_loss: 0.0230 Epoch 10/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0297 - val_loss: 0.0236 Epoch 11/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0279 - val_loss: 0.0233 Epoch 12/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0264 - val_loss: 0.0225 Epoch 13/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0255 - val_loss: 0.0228 Epoch 14/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0245 - val_loss: 0.0223 Epoch 15/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0236 - val_loss: 0.0234 Epoch 16/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0227 - val_loss: 0.0256 Epoch 17/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0219 - val_loss: 0.0240 Epoch 18/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0214 - val_loss: 0.0245 Epoch 19/50 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0207 - val_loss: 0.0250

</div> Let's plot training and validation loss to see how the training went. ```python plt.plot(history.history["loss"], label="Training Loss") plt.plot(history.history["val_loss"], label="Validation Loss") plt.legend() plt.show()

png


Detecting anomalies

We will detect anomalies by determining how well our model can reconstruct the input data.

  1. Find MAE loss on training samples.

  2. Find max MAE loss value. This is the worst our model has performed trying to reconstruct a sample. We will make this the threshold for anomaly detection.

  3. If the reconstruction loss for a sample is greater than this threshold value then we can infer that the model is seeing a pattern that it isn't familiar with. We will label this sample as an anomaly.

# Get train MAE loss. x_train_pred = model.predict(x_train) train_mae_loss = np.mean(np.abs(x_train_pred - x_train), axis=1) plt.hist(train_mae_loss, bins=50) plt.xlabel("Train MAE loss") plt.ylabel("No of samples") plt.show() # Get reconstruction loss threshold. threshold = np.max(train_mae_loss) print("Reconstruction error threshold: ", threshold)
``` 118/118 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step
</div> ![png](/img/examples/timeseries/timeseries_anomaly_detection/timeseries_anomaly_detection_23_1.png) <div class="k-default-codeblock">

Reconstruction error threshold: 0.1232659916089631

</div> ### Compare recontruction Just for fun, let's see how our model has recontructed the first sample. This is the 288 timesteps from day 1 of our training dataset. ```python # Checking how the first sequence is learnt plt.plot(x_train[0]) plt.plot(x_train_pred[0]) plt.show()

png

Prepare test data

df_test_value = (df_daily_jumpsup - training_mean) / training_std fig, ax = plt.subplots() df_test_value.plot(legend=False, ax=ax) plt.show() # Create sequences from test values. x_test = create_sequences(df_test_value.values) print("Test input shape: ", x_test.shape) # Get test MAE loss. x_test_pred = model.predict(x_test) test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1) test_mae_loss = test_mae_loss.reshape((-1)) plt.hist(test_mae_loss, bins=50) plt.xlabel("test MAE loss") plt.ylabel("No of samples") plt.show() # Detect all the samples which are anomalies. anomalies = test_mae_loss > threshold print("Number of anomaly samples: ", np.sum(anomalies)) print("Indices of anomaly samples: ", np.where(anomalies))

png

``` Test input shape: (3745, 288, 1) 118/118 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step
</div> ![png](/img/examples/timeseries/timeseries_anomaly_detection/timeseries_anomaly_detection_27_2.png) <div class="k-default-codeblock">

Number of anomaly samples: 394 Indices of anomaly samples: (array([1654, 2702, 2703, 2704, 2705, 2706, 2707, 2708, 2709, 2710, 2711, 2712, 2713, 2714, 2715, 2716, 2717, 2718, 2719, 2720, 2721, 2722, 2723, 2724, 2725, 2726, 2727, 2728, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744, 2745, 2746, 2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759, 2760, 2761, 2762, 2763, 2764, 2765, 2766, 2767, 2768, 2769, 2770, 2771, 2772, 2773, 2774, 2775, 2776, 2777, 2778, 2779, 2780, 2781, 2782, 2783, 2784, 2785, 2786, 2787, 2788, 2789, 2790, 2791, 2792, 2793, 2794, 2795, 2796, 2797, 2798, 2799, 2800, 2801, 2802, 2803, 2804, 2805, 2806, 2807, 2808, 2809, 2810, 2811, 2812, 2813, 2814, 2815, 2816, 2817, 2818, 2819, 2820, 2821, 2822, 2823, 2824, 2825, 2826, 2827, 2828, 2829, 2830, 2831, 2832, 2833, 2834, 2835, 2836, 2837, 2838, 2839, 2840, 2841, 2842, 2843, 2844, 2845, 2846, 2847, 2848, 2849, 2850, 2851, 2852, 2853, 2854, 2855, 2856, 2857, 2858, 2859, 2860, 2861, 2862, 2863, 2864, 2865, 2866, 2867, 2868, 2869, 2870, 2871, 2872, 2873, 2874, 2875, 2876, 2877, 2878, 2879, 2880, 2881, 2882, 2883, 2884, 2885, 2886, 2887, 2888, 2889, 2890, 2891, 2892, 2893, 2894, 2895, 2896, 2897, 2898, 2899, 2900, 2901, 2902, 2903, 2904, 2905, 2906, 2907, 2908, 2909, 2910, 2911, 2912, 2913, 2914, 2915, 2916, 2917, 2918, 2919, 2920, 2921, 2922, 2923, 2924, 2925, 2926, 2927, 2928, 2929, 2930, 2931, 2932, 2933, 2934, 2935, 2936, 2937, 2938, 2939, 2940, 2941, 2942, 2943, 2944, 2945, 2946, 2947, 2948, 2949, 2950, 2951, 2952, 2953, 2954, 2955, 2956, 2957, 2958, 2959, 2960, 2961, 2962, 2963, 2964, 2965, 2966, 2967, 2968, 2969, 2970, 2971, 2972, 2973, 2974, 2975, 2976, 2977, 2978, 2979, 2980, 2981, 2982, 2983, 2984, 2985, 2986, 2987, 2988, 2989, 2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997, 2998, 2999, 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3018, 3019, 3020, 3021, 3022, 3023, 3024, 3025, 3026, 3027, 3028, 3029, 3030, 3031, 3032, 3033, 3034, 3035, 3036, 3037, 3038, 3039, 3040, 3041, 3042, 3043, 3044, 3045, 3046, 3047, 3048, 3049, 3050, 3051, 3052, 3053, 3054, 3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063, 3064, 3065, 3066, 3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 3077, 3078, 3079, 3080, 3081, 3082, 3083, 3084, 3085, 3086, 3087, 3088, 3089, 3090, 3091, 3092, 3093, 3094]),)

</div> --- ## Plot anomalies We now know the samples of the data which are anomalies. With this, we will find the corresponding `timestamps` from the original test data. We will be using the following method to do that: Let's say time_steps = 3 and we have 10 training values. Our `x_train` will look like this: - 0, 1, 2 - 1, 2, 3 - 2, 3, 4 - 3, 4, 5 - 4, 5, 6 - 5, 6, 7 - 6, 7, 8 - 7, 8, 9 All except the initial and the final time_steps-1 data values, will appear in `time_steps` number of samples. So, if we know that the samples [(3, 4, 5), (4, 5, 6), (5, 6, 7)] are anomalies, we can say that the data point 5 is an anomaly. ```python # data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies anomalous_data_indices = [] for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1): if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]): anomalous_data_indices.append(data_idx)

Let's overlay the anomalies on the original test data plot.

df_subset = df_daily_jumpsup.iloc[anomalous_data_indices] fig, ax = plt.subplots() df_daily_jumpsup.plot(legend=False, ax=ax) df_subset.plot(legend=False, ax=ax, color="r") plt.show()

png