"""
Title: CutMix data augmentation for image classification
Author: [Sayan Nath](https://twitter.com/sayannath2350)
Date created: 2021/06/08
Last modified: 2023/11/14
Description: Data augmentation with CutMix for image classification on CIFAR-10.
Accelerator: GPU
Converted to Keras 3 By: [Piyush Thakur](https://github.com/cosmo3769)
"""
"""
## Introduction
"""
"""
_CutMix_ is a data augmentation technique that addresses the issue of information loss
and inefficiency present in regional dropout strategies.
Instead of removing pixels and filling them with black or grey pixels or Gaussian noise,
you replace the removed regions with a patch from another image,
while the ground truth labels are mixed proportionally to the number of pixels of combined images.
CutMix was proposed in
[CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features](https://arxiv.org/abs/1905.04899)
(Yun et al., 2019)
It's implemented via the following formulas:
<img src="https://i.imgur.com/cGvd13V.png" width="200"/>
where `M` is the binary mask which indicates the cutout and the fill-in
regions from the two randomly drawn images and `λ` (in `[0, 1]`) is drawn from a
[`Beta(α, α)` distribution](https://en.wikipedia.org/wiki/Beta_distribution)
The coordinates of bounding boxes are:
<img src="https://i.imgur.com/eNisep4.png" width="150"/>
which indicates the cutout and fill-in regions in case of the images.
The bounding box sampling is represented by:
<img src="https://i.imgur.com/Snph9aj.png" width="200"/>
where `rx, ry` are randomly drawn from a uniform distribution with upper bound.
"""
"""
## Setup
"""
import numpy as np
import keras
import matplotlib.pyplot as plt
from keras import layers
from tensorflow import clip_by_value
from tensorflow import data as tf_data
from tensorflow import image as tf_image
from tensorflow import random as tf_random
keras.utils.set_random_seed(42)
"""
## Load the CIFAR-10 dataset
In this example, we will use the
[CIFAR-10 image classification dataset](https://www.cs.toronto.edu/~kriz/cifar.html).
"""
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, num_classes=10)
y_test = keras.utils.to_categorical(y_test, num_classes=10)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
class_names = [
"Airplane",
"Automobile",
"Bird",
"Cat",
"Deer",
"Dog",
"Frog",
"Horse",
"Ship",
"Truck",
]
"""
## Define hyperparameters
"""
AUTO = tf_data.AUTOTUNE
BATCH_SIZE = 32
IMG_SIZE = 32
"""
## Define the image preprocessing function
"""
def preprocess_image(image, label):
image = tf_image.resize(image, (IMG_SIZE, IMG_SIZE))
image = tf_image.convert_image_dtype(image, "float32") / 255.0
label = keras.ops.cast(label, dtype="float32")
return image, label
"""
## Convert the data into TensorFlow `Dataset` objects
"""
train_ds_one = (
tf_data.Dataset.from_tensor_slices((x_train, y_train))
.shuffle(1024)
.map(preprocess_image, num_parallel_calls=AUTO)
)
train_ds_two = (
tf_data.Dataset.from_tensor_slices((x_train, y_train))
.shuffle(1024)
.map(preprocess_image, num_parallel_calls=AUTO)
)
train_ds_simple = tf_data.Dataset.from_tensor_slices((x_train, y_train))
test_ds = tf_data.Dataset.from_tensor_slices((x_test, y_test))
train_ds_simple = (
train_ds_simple.map(preprocess_image, num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
train_ds = tf_data.Dataset.zip((train_ds_one, train_ds_two))
test_ds = (
test_ds.map(preprocess_image, num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
"""
## Define the CutMix data augmentation function
The CutMix function takes two `image` and `label` pairs to perform the augmentation.
It samples `λ(l)` from the [Beta distribution](https://en.wikipedia.org/wiki/Beta_distribution)
and returns a bounding box from `get_box` function. We then crop the second image (`image2`)
and pad this image in the final padded image at the same location.
"""
def sample_beta_distribution(size, concentration_0=0.2, concentration_1=0.2):
gamma_1_sample = tf_random.gamma(shape=[size], alpha=concentration_1)
gamma_2_sample = tf_random.gamma(shape=[size], alpha=concentration_0)
return gamma_1_sample / (gamma_1_sample + gamma_2_sample)
def get_box(lambda_value):
cut_rat = keras.ops.sqrt(1.0 - lambda_value)
cut_w = IMG_SIZE * cut_rat
cut_w = keras.ops.cast(cut_w, "int32")
cut_h = IMG_SIZE * cut_rat
cut_h = keras.ops.cast(cut_h, "int32")
cut_x = keras.random.uniform((1,), minval=0, maxval=IMG_SIZE)
cut_x = keras.ops.cast(cut_x, "int32")
cut_y = keras.random.uniform((1,), minval=0, maxval=IMG_SIZE)
cut_y = keras.ops.cast(cut_y, "int32")
boundaryx1 = clip_by_value(cut_x[0] - cut_w // 2, 0, IMG_SIZE)
boundaryy1 = clip_by_value(cut_y[0] - cut_h // 2, 0, IMG_SIZE)
bbx2 = clip_by_value(cut_x[0] + cut_w // 2, 0, IMG_SIZE)
bby2 = clip_by_value(cut_y[0] + cut_h // 2, 0, IMG_SIZE)
target_h = bby2 - boundaryy1
if target_h == 0:
target_h += 1
target_w = bbx2 - boundaryx1
if target_w == 0:
target_w += 1
return boundaryx1, boundaryy1, target_h, target_w
def cutmix(train_ds_one, train_ds_two):
(image1, label1), (image2, label2) = train_ds_one, train_ds_two
alpha = [0.25]
beta = [0.25]
lambda_value = sample_beta_distribution(1, alpha, beta)
lambda_value = lambda_value[0][0]
boundaryx1, boundaryy1, target_h, target_w = get_box(lambda_value)
crop2 = tf_image.crop_to_bounding_box(
image2, boundaryy1, boundaryx1, target_h, target_w
)
image2 = tf_image.pad_to_bounding_box(
crop2, boundaryy1, boundaryx1, IMG_SIZE, IMG_SIZE
)
crop1 = tf_image.crop_to_bounding_box(
image1, boundaryy1, boundaryx1, target_h, target_w
)
img1 = tf_image.pad_to_bounding_box(
crop1, boundaryy1, boundaryx1, IMG_SIZE, IMG_SIZE
)
image1 = image1 - img1
image = image1 + image2
lambda_value = 1 - (target_w * target_h) / (IMG_SIZE * IMG_SIZE)
lambda_value = keras.ops.cast(lambda_value, "float32")
label = lambda_value * label1 + (1 - lambda_value) * label2
return image, label
"""
**Note**: we are combining two images to create a single one.
## Visualize the new dataset after applying the CutMix augmentation
"""
train_ds_cmu = (
train_ds.shuffle(1024)
.map(cutmix, num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
image_batch, label_batch = next(iter(train_ds_cmu))
plt.figure(figsize=(10, 10))
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.title(class_names[np.argmax(label_batch[i])])
plt.imshow(image_batch[i])
plt.axis("off")
"""
## Define a ResNet-20 model
"""
def resnet_layer(
inputs,
num_filters=16,
kernel_size=3,
strides=1,
activation="relu",
batch_normalization=True,
conv_first=True,
):
conv = layers.Conv2D(
num_filters,
kernel_size=kernel_size,
strides=strides,
padding="same",
kernel_initializer="he_normal",
kernel_regularizer=keras.regularizers.L2(1e-4),
)
x = inputs
if conv_first:
x = conv(x)
if batch_normalization:
x = layers.BatchNormalization()(x)
if activation is not None:
x = layers.Activation(activation)(x)
else:
if batch_normalization:
x = layers.BatchNormalization()(x)
if activation is not None:
x = layers.Activation(activation)(x)
x = conv(x)
return x
def resnet_v20(input_shape, depth, num_classes=10):
if (depth - 2) % 6 != 0:
raise ValueError("depth should be 6n+2 (eg 20, 32, 44 in [a])")
num_filters = 16
num_res_blocks = int((depth - 2) / 6)
inputs = layers.Input(shape=input_shape)
x = resnet_layer(inputs=inputs)
for stack in range(3):
for res_block in range(num_res_blocks):
strides = 1
if stack > 0 and res_block == 0:
strides = 2
y = resnet_layer(inputs=x, num_filters=num_filters, strides=strides)
y = resnet_layer(inputs=y, num_filters=num_filters, activation=None)
if stack > 0 and res_block == 0:
x = resnet_layer(
inputs=x,
num_filters=num_filters,
kernel_size=1,
strides=strides,
activation=None,
batch_normalization=False,
)
x = layers.add([x, y])
x = layers.Activation("relu")(x)
num_filters *= 2
x = layers.AveragePooling2D(pool_size=8)(x)
y = layers.Flatten()(x)
outputs = layers.Dense(
num_classes, activation="softmax", kernel_initializer="he_normal"
)(y)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def training_model():
return resnet_v20((32, 32, 3), 20)
initial_model = training_model()
initial_model.save_weights("initial_weights.weights.h5")
"""
## Train the model with the dataset augmented by CutMix
"""
model = training_model()
model.load_weights("initial_weights.weights.h5")
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(train_ds_cmu, validation_data=test_ds, epochs=15)
test_loss, test_accuracy = model.evaluate(test_ds)
print("Test accuracy: {:.2f}%".format(test_accuracy * 100))
"""
## Train the model using the original non-augmented dataset
"""
model = training_model()
model.load_weights("initial_weights.weights.h5")
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(train_ds_simple, validation_data=test_ds, epochs=15)
test_loss, test_accuracy = model.evaluate(test_ds)
print("Test accuracy: {:.2f}%".format(test_accuracy * 100))
"""
## Notes
In this example, we trained our model for 15 epochs.
In our experiment, the model with CutMix achieves a better accuracy on the CIFAR-10 dataset
(77.34% in our experiment) compared to the model that doesn't use the augmentation (66.90%).
You may notice it takes less time to train the model with the CutMix augmentation.
You can experiment further with the CutMix technique by following the
[original paper](https://arxiv.org/abs/1905.04899).
"""