"""
Title: Grad-CAM class activation visualization
Author: [fchollet](https://twitter.com/fchollet)
Date created: 2020/04/26
Last modified: 2021/03/07
Description: How to obtain a class activation heatmap for an image classification model.
Accelerator: GPU
"""
"""
Adapted from Deep Learning with Python (2017).
## Setup
"""
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import numpy as np
import tensorflow as tf
import keras
from IPython.display import Image, display
import matplotlib as mpl
import matplotlib.pyplot as plt
"""
## Configurable parameters
You can change these to another model.
To get the values for `last_conv_layer_name` use `model.summary()`
to see the names of all layers in the model.
"""
model_builder = keras.applications.xception.Xception
img_size = (299, 299)
preprocess_input = keras.applications.xception.preprocess_input
decode_predictions = keras.applications.xception.decode_predictions
last_conv_layer_name = "block14_sepconv2_act"
img_path = keras.utils.get_file(
"african_elephant.jpg", "https://i.imgur.com/Bvro0YD.png"
)
display(Image(img_path))
"""
## The Grad-CAM algorithm
"""
def get_img_array(img_path, size):
img = keras.utils.load_img(img_path, target_size=size)
array = keras.utils.img_to_array(img)
array = np.expand_dims(array, axis=0)
return array
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
grad_model = keras.models.Model(
model.inputs, [model.get_layer(last_conv_layer_name).output, model.output]
)
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
grads = tape.gradient(class_channel, last_conv_layer_output)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
"""
## Let's test-drive it
"""
img_array = preprocess_input(get_img_array(img_path, size=img_size))
model = model_builder(weights="imagenet")
model.layers[-1].activation = None
preds = model.predict(img_array)
print("Predicted:", decode_predictions(preds, top=1)[0])
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
plt.matshow(heatmap)
plt.show()
"""
## Create a superimposed visualization
"""
def save_and_display_gradcam(img_path, heatmap, cam_path="cam.jpg", alpha=0.4):
img = keras.utils.load_img(img_path)
img = keras.utils.img_to_array(img)
heatmap = np.uint8(255 * heatmap)
jet = mpl.colormaps["jet"]
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
jet_heatmap = keras.utils.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = keras.utils.img_to_array(jet_heatmap)
superimposed_img = jet_heatmap * alpha + img
superimposed_img = keras.utils.array_to_img(superimposed_img)
superimposed_img.save(cam_path)
display(Image(cam_path))
save_and_display_gradcam(img_path, heatmap)
"""
## Let's try another image
We will see how the grad cam explains the model's outputs for a multi-label image. Let's
try an image with a cat and a dog together, and see how the grad cam behaves.
"""
img_path = keras.utils.get_file(
"cat_and_dog.jpg",
"https://storage.googleapis.com/petbacker/images/blog/2017/dog-and-cat-cover.jpg",
)
display(Image(img_path))
img_array = preprocess_input(get_img_array(img_path, size=img_size))
preds = model.predict(img_array)
print("Predicted:", decode_predictions(preds, top=2)[0])
"""
We generate class activation heatmap for "chow," the class index is 260
"""
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=260)
save_and_display_gradcam(img_path, heatmap)
"""
We generate class activation heatmap for "egyptian cat," the class index is 285
"""
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=285)
save_and_display_gradcam(img_path, heatmap)