Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/vision/md/captcha_ocr.md
3508 views

OCR model for reading Captchas

Author: A_K_Nain
Date created: 2020/06/14
Last modified: 2024/03/13
Description: How to implement an OCR model using CNNs, RNNs and CTC loss.

View in Colab GitHub source


Introduction

This example demonstrates a simple OCR model built with the Functional API. Apart from combining CNN and RNN, it also illustrates how you can instantiate a new layer and use it as an "Endpoint layer" for implementing CTC loss. For a detailed guide to layer subclassing, please check out this page in the developer guides.


Setup

import os os.environ["KERAS_BACKEND"] = "tensorflow" import numpy as np import matplotlib.pyplot as plt from pathlib import Path import tensorflow as tf import keras from keras import ops from keras import layers

Load the data: Captcha Images

Let's download the data.

!curl -LO https://github.com/AakashKumarNain/CaptchaCracker/raw/master/captcha_images_v2.zip !unzip -qq captcha_images_v2.zip
``` % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 8863k 100 8863k 0 0 11.9M 0 --:--:-- --:--:-- --:--:-- 141M
</div> The dataset contains 1040 captcha files as `png` images. The label for each sample is a string, the name of the file (minus the file extension). We will map each character in the string to an integer for training the model. Similary, we will need to map the predictions of the model back to strings. For this purpose we will maintain two dictionaries, mapping characters to integers, and integers to characters, respectively. ```python # Path to the data directory data_dir = Path("./captcha_images_v2/") # Get list of all the images images = sorted(list(map(str, list(data_dir.glob("*.png"))))) labels = [img.split(os.path.sep)[-1].split(".png")[0] for img in images] characters = set(char for label in labels for char in label) characters = sorted(list(characters)) print("Number of images found: ", len(images)) print("Number of labels found: ", len(labels)) print("Number of unique characters: ", len(characters)) print("Characters present: ", characters) # Batch size for training and validation batch_size = 16 # Desired image dimensions img_width = 200 img_height = 50 # Factor by which the image is going to be downsampled # by the convolutional blocks. We will be using two # convolution blocks and each block will have # a pooling layer which downsample the features by a factor of 2. # Hence total downsampling factor would be 4. downsample_factor = 4 # Maximum length of any captcha in the dataset max_length = max([len(label) for label in labels])
``` Number of images found: 1040 Number of labels found: 1040 Number of unique characters: 19 Characters present: ['2', '3', '4', '5', '6', '7', '8', 'b', 'c', 'd', 'e', 'f', 'g', 'm', 'n', 'p', 'w', 'x', 'y']
</div> --- ## Preprocessing ```python # Mapping characters to integers char_to_num = layers.StringLookup(vocabulary=list(characters), mask_token=None) # Mapping integers back to original characters num_to_char = layers.StringLookup( vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True ) def split_data(images, labels, train_size=0.9, shuffle=True): # 1. Get the total size of the dataset size = len(images) # 2. Make an indices array and shuffle it, if required indices = ops.arange(size) if shuffle: indices = keras.random.shuffle(indices) # 3. Get the size of training samples train_samples = int(size * train_size) # 4. Split data into training and validation sets x_train, y_train = images[indices[:train_samples]], labels[indices[:train_samples]] x_valid, y_valid = images[indices[train_samples:]], labels[indices[train_samples:]] return x_train, x_valid, y_train, y_valid # Splitting data into training and validation sets x_train, x_valid, y_train, y_valid = split_data(np.array(images), np.array(labels)) def encode_single_sample(img_path, label): # 1. Read image img = tf.io.read_file(img_path) # 2. Decode and convert to grayscale img = tf.io.decode_png(img, channels=1) # 3. Convert to float32 in [0, 1] range img = tf.image.convert_image_dtype(img, tf.float32) # 4. Resize to the desired size img = ops.image.resize(img, [img_height, img_width]) # 5. Transpose the image because we want the time # dimension to correspond to the width of the image. img = ops.transpose(img, axes=[1, 0, 2]) # 6. Map the characters in label to numbers label = char_to_num(tf.strings.unicode_split(label, input_encoding="UTF-8")) # 7. Return a dict as our model is expecting two inputs return {"image": img, "label": label}

Create Dataset objects

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = ( train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .batch(batch_size) .prefetch(buffer_size=tf.data.AUTOTUNE) ) validation_dataset = tf.data.Dataset.from_tensor_slices((x_valid, y_valid)) validation_dataset = ( validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .batch(batch_size) .prefetch(buffer_size=tf.data.AUTOTUNE) )

Visualize the data

_, ax = plt.subplots(4, 4, figsize=(10, 5)) for batch in train_dataset.take(1): images = batch["image"] labels = batch["label"] for i in range(16): img = (images[i] * 255).numpy().astype("uint8") label = tf.strings.reduce_join(num_to_char(labels[i])).numpy().decode("utf-8") ax[i // 4, i % 4].imshow(img[:, :, 0].T, cmap="gray") ax[i // 4, i % 4].set_title(label) ax[i // 4, i % 4].axis("off") plt.show()

png


Model

def ctc_batch_cost(y_true, y_pred, input_length, label_length): label_length = ops.cast(ops.squeeze(label_length, axis=-1), dtype="int32") input_length = ops.cast(ops.squeeze(input_length, axis=-1), dtype="int32") sparse_labels = ops.cast( ctc_label_dense_to_sparse(y_true, label_length), dtype="int32" ) y_pred = ops.log(ops.transpose(y_pred, axes=[1, 0, 2]) + keras.backend.epsilon()) return ops.expand_dims( tf.compat.v1.nn.ctc_loss( inputs=y_pred, labels=sparse_labels, sequence_length=input_length ), 1, ) def ctc_label_dense_to_sparse(labels, label_lengths): label_shape = ops.shape(labels) num_batches_tns = ops.stack([label_shape[0]]) max_num_labels_tns = ops.stack([label_shape[1]]) def range_less_than(old_input, current_input): return ops.expand_dims(ops.arange(ops.shape(old_input)[1]), 0) < tf.fill( max_num_labels_tns, current_input ) init = ops.cast(tf.fill([1, label_shape[1]], 0), dtype="bool") dense_mask = tf.compat.v1.scan( range_less_than, label_lengths, initializer=init, parallel_iterations=1 ) dense_mask = dense_mask[:, 0, :] label_array = ops.reshape( ops.tile(ops.arange(0, label_shape[1]), num_batches_tns), label_shape ) label_ind = tf.compat.v1.boolean_mask(label_array, dense_mask) batch_array = ops.transpose( ops.reshape( ops.tile(ops.arange(0, label_shape[0]), max_num_labels_tns), tf.reverse(label_shape, [0]), ) ) batch_ind = tf.compat.v1.boolean_mask(batch_array, dense_mask) indices = ops.transpose( ops.reshape(ops.concatenate([batch_ind, label_ind], axis=0), [2, -1]) ) vals_sparse = tf.compat.v1.gather_nd(labels, indices) return tf.SparseTensor( ops.cast(indices, dtype="int64"), vals_sparse, ops.cast(label_shape, dtype="int64") ) class CTCLayer(layers.Layer): def __init__(self, name=None): super().__init__(name=name) self.loss_fn = ctc_batch_cost def call(self, y_true, y_pred): # Compute the training-time loss value and add it # to the layer using `self.add_loss()`. batch_len = ops.cast(ops.shape(y_true)[0], dtype="int64") input_length = ops.cast(ops.shape(y_pred)[1], dtype="int64") label_length = ops.cast(ops.shape(y_true)[1], dtype="int64") input_length = input_length * ops.ones(shape=(batch_len, 1), dtype="int64") label_length = label_length * ops.ones(shape=(batch_len, 1), dtype="int64") loss = self.loss_fn(y_true, y_pred, input_length, label_length) self.add_loss(loss) # At test time, just return the computed predictions return y_pred def build_model(): # Inputs to the model input_img = layers.Input( shape=(img_width, img_height, 1), name="image", dtype="float32" ) labels = layers.Input(name="label", shape=(None,), dtype="float32") # First conv block x = layers.Conv2D( 32, (3, 3), activation="relu", kernel_initializer="he_normal", padding="same", name="Conv1", )(input_img) x = layers.MaxPooling2D((2, 2), name="pool1")(x) # Second conv block x = layers.Conv2D( 64, (3, 3), activation="relu", kernel_initializer="he_normal", padding="same", name="Conv2", )(x) x = layers.MaxPooling2D((2, 2), name="pool2")(x) # We have used two max pool with pool size and strides 2. # Hence, downsampled feature maps are 4x smaller. The number of # filters in the last layer is 64. Reshape accordingly before # passing the output to the RNN part of the model new_shape = ((img_width // 4), (img_height // 4) * 64) x = layers.Reshape(target_shape=new_shape, name="reshape")(x) x = layers.Dense(64, activation="relu", name="dense1")(x) x = layers.Dropout(0.2)(x) # RNNs x = layers.Bidirectional(layers.LSTM(128, return_sequences=True, dropout=0.25))(x) x = layers.Bidirectional(layers.LSTM(64, return_sequences=True, dropout=0.25))(x) # Output layer x = layers.Dense( len(char_to_num.get_vocabulary()) + 1, activation="softmax", name="dense2" )(x) # Add CTC layer for calculating CTC loss at each step output = CTCLayer(name="ctc_loss")(labels, x) # Define the model model = keras.models.Model( inputs=[input_img, labels], outputs=output, name="ocr_model_v1" ) # Optimizer opt = keras.optimizers.Adam() # Compile the model and return model.compile(optimizer=opt) return model # Get the model model = build_model() model.summary()
Model: "ocr_model_v1"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type)         Output Shape       Param #  Connected to         ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ image (InputLayer)  │ (None, 200, 50,   │       0 │ -                    │
│                     │ 1)                │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ Conv1 (Conv2D)      │ (None, 200, 50,   │     320 │ image[0][0]          │
│                     │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ pool1               │ (None, 100, 25,   │       0 │ Conv1[0][0]          │
│ (MaxPooling2D)      │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ Conv2 (Conv2D)      │ (None, 100, 25,   │  18,496 │ pool1[0][0]          │
│                     │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ pool2               │ (None, 50, 12,    │       0 │ Conv2[0][0]          │
│ (MaxPooling2D)      │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ reshape (Reshape)   │ (None, 50, 768)   │       0 │ pool2[0][0]          │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ dense1 (Dense)      │ (None, 50, 64)    │  49,216 │ reshape[0][0]        │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ dropout (Dropout)   │ (None, 50, 64)    │       0 │ dense1[0][0]         │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ bidirectional       │ (None, 50, 256)   │ 197,632 │ dropout[0][0]        │
│ (Bidirectional)     │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ bidirectional_1     │ (None, 50, 128)   │ 164,352 │ bidirectional[0][0]  │
│ (Bidirectional)     │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ label (InputLayer)  │ (None, None)      │       0 │ -                    │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ dense2 (Dense)      │ (None, 50, 21)    │   2,709 │ bidirectional_1[0][ │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ ctc_loss (CTCLayer) │ (None, 50, 21)    │       0 │ label[0][0],         │
│                     │                   │         │ dense2[0][0]         │
└─────────────────────┴───────────────────┴─────────┴──────────────────────┘
 Total params: 432,725 (1.65 MB)
 Trainable params: 432,725 (1.65 MB)
 Non-trainable params: 0 (0.00 B)

Training

# TODO restore epoch count. epochs = 100 early_stopping_patience = 10 # Add early stopping early_stopping = keras.callbacks.EarlyStopping( monitor="val_loss", patience=early_stopping_patience, restore_best_weights=True ) # Train the model history = model.fit( train_dataset, validation_data=validation_dataset, epochs=epochs, callbacks=[early_stopping], )
``` Epoch 1/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 22s 229ms/step - loss: 35.8756 - val_loss: 16.3966 Epoch 2/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 14s 235ms/step - loss: 16.4092 - val_loss: 16.3648 Epoch 3/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 224ms/step - loss: 16.3922 - val_loss: 16.3571 Epoch 4/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 218ms/step - loss: 16.3749 - val_loss: 16.3602 Epoch 5/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 210ms/step - loss: 16.3756 - val_loss: 16.3513 Epoch 6/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 14s 236ms/step - loss: 16.3737 - val_loss: 16.3466 Epoch 7/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 227ms/step - loss: 16.3591 - val_loss: 16.3479 Epoch 8/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 219ms/step - loss: 16.3505 - val_loss: 16.3436 Epoch 9/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 213ms/step - loss: 16.3440 - val_loss: 16.3386 Epoch 10/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 226ms/step - loss: 16.3312 - val_loss: 16.3066 Epoch 11/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 224ms/step - loss: 16.3077 - val_loss: 16.3288 Epoch 12/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 226ms/step - loss: 16.2746 - val_loss: 16.2750 Epoch 13/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 214ms/step - loss: 16.1853 - val_loss: 16.1606 Epoch 14/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 21s 229ms/step - loss: 16.0636 - val_loss: 16.1616 Epoch 15/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 223ms/step - loss: 15.9873 - val_loss: 16.0928 Epoch 16/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 224ms/step - loss: 15.9339 - val_loss: 16.0070 Epoch 17/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 213ms/step - loss: 15.8379 - val_loss: 15.8443 Epoch 18/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 212ms/step - loss: 15.7156 - val_loss: 15.6414 Epoch 19/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 21s 224ms/step - loss: 15.5618 - val_loss: 15.5937 Epoch 20/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 219ms/step - loss: 15.4386 - val_loss: 15.4481 Epoch 21/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 215ms/step - loss: 15.2270 - val_loss: 15.4191 Epoch 22/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 14s 229ms/step - loss: 15.0565 - val_loss: 15.1226 Epoch 23/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 226ms/step - loss: 14.8641 - val_loss: 14.9598 Epoch 24/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 225ms/step - loss: 14.6488 - val_loss: 14.7074 Epoch 25/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 213ms/step - loss: 14.3843 - val_loss: 14.4713 Epoch 26/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 224ms/step - loss: 14.1244 - val_loss: 14.0645 Epoch 27/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 218ms/step - loss: 13.8279 - val_loss: 13.7670 Epoch 28/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 218ms/step - loss: 13.4959 - val_loss: 13.5277 Epoch 29/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 206ms/step - loss: 13.2192 - val_loss: 13.2536 Epoch 30/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 23s 248ms/step - loss: 12.9255 - val_loss: 12.8277 Epoch 31/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 19s 220ms/step - loss: 12.5599 - val_loss: 12.6968 Epoch 32/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 207ms/step - loss: 12.2893 - val_loss: 12.3682 Epoch 33/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 205ms/step - loss: 11.8148 - val_loss: 11.7916 Epoch 34/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 21s 215ms/step - loss: 11.3895 - val_loss: 11.6033 Epoch 35/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 216ms/step - loss: 11.0912 - val_loss: 11.1269 Epoch 36/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 206ms/step - loss: 10.7124 - val_loss: 10.8567 Epoch 37/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 203ms/step - loss: 10.2611 - val_loss: 10.5215 Epoch 38/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 220ms/step - loss: 9.9407 - val_loss: 10.2151 Epoch 39/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 213ms/step - loss: 9.5958 - val_loss: 9.6870 Epoch 40/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 208ms/step - loss: 9.2352 - val_loss: 9.2340 Epoch 41/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 202ms/step - loss: 8.7480 - val_loss: 8.9227 Epoch 42/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 218ms/step - loss: 8.2937 - val_loss: 8.7348 Epoch 43/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 214ms/step - loss: 8.0500 - val_loss: 8.3136 Epoch 44/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 213ms/step - loss: 7.7643 - val_loss: 7.9847 Epoch 45/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 207ms/step - loss: 7.2927 - val_loss: 7.9830 Epoch 46/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 200ms/step - loss: 7.0159 - val_loss: 7.4162 Epoch 47/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 217ms/step - loss: 6.8198 - val_loss: 7.1488 Epoch 48/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 213ms/step - loss: 6.4661 - val_loss: 7.0038 Epoch 49/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 210ms/step - loss: 6.1844 - val_loss: 6.7504 Epoch 50/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 201ms/step - loss: 5.8523 - val_loss: 6.5577 Epoch 51/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 225ms/step - loss: 5.7405 - val_loss: 6.4001 Epoch 52/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 215ms/step - loss: 5.3831 - val_loss: 6.3826 Epoch 53/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 202ms/step - loss: 5.1238 - val_loss: 6.0649 Epoch 54/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 21s 218ms/step - loss: 4.9646 - val_loss: 5.8397 Epoch 55/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 213ms/step - loss: 4.7486 - val_loss: 5.7926 Epoch 56/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 206ms/step - loss: 4.4270 - val_loss: 5.7480 Epoch 57/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 199ms/step - loss: 4.3954 - val_loss: 5.7311 Epoch 58/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 205ms/step - loss: 4.2907 - val_loss: 5.6178 Epoch 59/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 21s 211ms/step - loss: 4.0034 - val_loss: 5.3565 Epoch 60/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 208ms/step - loss: 3.7862 - val_loss: 5.3226 Epoch 61/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 198ms/step - loss: 3.7867 - val_loss: 5.1675 Epoch 62/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 198ms/step - loss: 3.3635 - val_loss: 4.9778 Epoch 63/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 223ms/step - loss: 3.3120 - val_loss: 5.0680 Epoch 64/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 213ms/step - loss: 3.2816 - val_loss: 4.9794 Epoch 65/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 209ms/step - loss: 3.1493 - val_loss: 4.9307 Epoch 66/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 199ms/step - loss: 2.8954 - val_loss: 4.6848 Epoch 67/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 200ms/step - loss: 2.9579 - val_loss: 4.7673 Epoch 68/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 224ms/step - loss: 2.8408 - val_loss: 4.7547 Epoch 69/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 212ms/step - loss: 2.5937 - val_loss: 4.6363 Epoch 70/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 206ms/step - loss: 2.5928 - val_loss: 4.6453 Epoch 71/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 198ms/step - loss: 2.5662 - val_loss: 4.6460 Epoch 72/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 15s 249ms/step - loss: 2.5619 - val_loss: 4.7042 Epoch 73/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 18s 211ms/step - loss: 2.3146 - val_loss: 4.5853 Epoch 74/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 210ms/step - loss: 2.1848 - val_loss: 4.5865 Epoch 75/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 199ms/step - loss: 2.1284 - val_loss: 4.6487 Epoch 76/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 218ms/step - loss: 2.0072 - val_loss: 4.5793 Epoch 77/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 209ms/step - loss: 1.8963 - val_loss: 4.6183 Epoch 78/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 211ms/step - loss: 1.7980 - val_loss: 4.7451 Epoch 79/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 198ms/step - loss: 1.7276 - val_loss: 4.6344 Epoch 80/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 200ms/step - loss: 1.7558 - val_loss: 4.5365 Epoch 81/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 221ms/step - loss: 1.6611 - val_loss: 4.4597 Epoch 82/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 209ms/step - loss: 1.6337 - val_loss: 4.5162 Epoch 83/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 211ms/step - loss: 1.5404 - val_loss: 4.5297 Epoch 84/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 199ms/step - loss: 1.5716 - val_loss: 4.5663 Epoch 85/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 216ms/step - loss: 1.5106 - val_loss: 4.5341 Epoch 86/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 210ms/step - loss: 1.4508 - val_loss: 4.5627 Epoch 87/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 210ms/step - loss: 1.3580 - val_loss: 4.6142 Epoch 88/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 198ms/step - loss: 1.3243 - val_loss: 4.4505 Epoch 89/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 208ms/step - loss: 1.2391 - val_loss: 4.5890 Epoch 90/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 210ms/step - loss: 1.2288 - val_loss: 4.6803 Epoch 91/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 208ms/step - loss: 1.1559 - val_loss: 4.6009 Epoch 92/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 198ms/step - loss: 1.1157 - val_loss: 4.6105 Epoch 93/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 199ms/step - loss: 1.0949 - val_loss: 4.4293 Epoch 94/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 13s 225ms/step - loss: 1.0753 - val_loss: 4.3587 Epoch 95/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 210ms/step - loss: 0.9857 - val_loss: 4.7014 Epoch 96/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 208ms/step - loss: 1.0708 - val_loss: 4.6754 Epoch 97/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 201ms/step - loss: 0.9798 - val_loss: 4.4668 Epoch 98/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 12s 205ms/step - loss: 0.9349 - val_loss: 4.7812 Epoch 99/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 21s 209ms/step - loss: 0.8769 - val_loss: 4.8273 Epoch 100/100 59/59 ━━━━━━━━━━━━━━━━━━━━ 20s 202ms/step - loss: 0.9521 - val_loss: 4.5411
</div> --- ## Inference You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/ocr-for-captcha) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/ocr-for-captcha). ```python def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1): input_shape = ops.shape(y_pred) num_samples, num_steps = input_shape[0], input_shape[1] y_pred = ops.log(ops.transpose(y_pred, axes=[1, 0, 2]) + keras.backend.epsilon()) input_length = ops.cast(input_length, dtype="int32") if greedy: (decoded, log_prob) = tf.nn.ctc_greedy_decoder( inputs=y_pred, sequence_length=input_length ) else: (decoded, log_prob) = tf.compat.v1.nn.ctc_beam_search_decoder( inputs=y_pred, sequence_length=input_length, beam_width=beam_width, top_paths=top_paths, ) decoded_dense = [] for st in decoded: st = tf.SparseTensor(st.indices, st.values, (num_samples, num_steps)) decoded_dense.append(tf.sparse.to_dense(sp_input=st, default_value=-1)) return (decoded_dense, log_prob) # Get the prediction model by extracting layers till the output layer prediction_model = keras.models.Model( model.input[0], model.get_layer(name="dense2").output ) prediction_model.summary() # A utility function to decode the output of the network def decode_batch_predictions(pred): input_len = np.ones(pred.shape[0]) * pred.shape[1] # Use greedy search. For complex tasks, you can use beam search results = ctc_decode(pred, input_length=input_len, greedy=True)[0][0][ :, :max_length ] # Iterate over the results and get back the text output_text = [] for res in results: res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8") output_text.append(res) return output_text # Let's check results on some validation samples for batch in validation_dataset.take(1): batch_images = batch["image"] batch_labels = batch["label"] preds = prediction_model.predict(batch_images) pred_texts = decode_batch_predictions(preds) orig_texts = [] for label in batch_labels: label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") orig_texts.append(label) _, ax = plt.subplots(4, 4, figsize=(15, 5)) for i in range(len(pred_texts)): img = (batch_images[i, :, :, 0] * 255).numpy().astype(np.uint8) img = img.T title = f"Prediction: {pred_texts[i]}" ax[i // 4, i % 4].imshow(img, cmap="gray") ax[i // 4, i % 4].set_title(title) ax[i // 4, i % 4].axis("off") plt.show()
Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ image (InputLayer)              │ (None, 200, 50, 1)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ Conv1 (Conv2D)                  │ (None, 200, 50, 32)       │        320 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ pool1 (MaxPooling2D)            │ (None, 100, 25, 32)       │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ Conv2 (Conv2D)                  │ (None, 100, 25, 64)       │     18,496 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ pool2 (MaxPooling2D)            │ (None, 50, 12, 64)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ reshape (Reshape)               │ (None, 50, 768)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense1 (Dense)                  │ (None, 50, 64)            │     49,216 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (None, 50, 64)            │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ bidirectional (Bidirectional)   │ (None, 50, 256)           │    197,632 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ bidirectional_1 (Bidirectional) │ (None, 50, 128)           │    164,352 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense2 (Dense)                  │ (None, 50, 21)            │      2,709 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 432,725 (1.65 MB)
 Trainable params: 432,725 (1.65 MB)
 Non-trainable params: 0 (0.00 B)
``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 579ms/step
</div> ![png](/img/examples/vision/captcha_ocr/captcha_ocr_19_6.png)