Path: blob/master/examples/vision/md/oxford_pets_image_segmentation.md
3508 views
Image segmentation with a U-Net-like architecture
Author: fchollet
Date created: 2019/03/20
Last modified: 2020/04/20
Description: Image segmentation model trained from scratch on the Oxford Pets dataset.
Download the data
Prepare dataset to load & vectorize batches of data
Prepare U-Net Xception-style model
Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩ │ input_layer │ (None, 160, 160, │ 0 │ - │ │ (InputLayer) │ 3) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d (Conv2D) │ (None, 80, 80, │ 896 │ input_layer[0][0] │ │ │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalization │ (None, 80, 80, │ 128 │ conv2d[0][0] │ │ (BatchNormalizatio… │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation │ (None, 80, 80, │ 0 │ batch_normalization… │ │ (Activation) │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_1 │ (None, 80, 80, │ 0 │ activation[0][0] │ │ (Activation) │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ separable_conv2d │ (None, 80, 80, │ 2,400 │ activation_1[0][0] │ │ (SeparableConv2D) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 80, 80, │ 256 │ separable_conv2d[0]… │ │ (BatchNormalizatio… │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_2 │ (None, 80, 80, │ 0 │ batch_normalization… │ │ (Activation) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ separable_conv2d_1 │ (None, 80, 80, │ 4,736 │ activation_2[0][0] │ │ (SeparableConv2D) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 80, 80, │ 256 │ separable_conv2d_1[… │ │ (BatchNormalizatio… │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling2d │ (None, 40, 40, │ 0 │ batch_normalization… │ │ (MaxPooling2D) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_1 (Conv2D) │ (None, 40, 40, │ 2,112 │ activation[0][0] │ │ │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add (Add) │ (None, 40, 40, │ 0 │ max_pooling2d[0][0], │ │ │ 64) │ │ conv2d_1[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_3 │ (None, 40, 40, │ 0 │ add[0][0] │ │ (Activation) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ separable_conv2d_2 │ (None, 40, 40, │ 8,896 │ activation_3[0][0] │ │ (SeparableConv2D) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 40, 40, │ 512 │ separable_conv2d_2[… │ │ (BatchNormalizatio… │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_4 │ (None, 40, 40, │ 0 │ batch_normalization… │ │ (Activation) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ separable_conv2d_3 │ (None, 40, 40, │ 17,664 │ activation_4[0][0] │ │ (SeparableConv2D) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 40, 40, │ 512 │ separable_conv2d_3[… │ │ (BatchNormalizatio… │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling2d_1 │ (None, 20, 20, │ 0 │ batch_normalization… │ │ (MaxPooling2D) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_2 (Conv2D) │ (None, 20, 20, │ 8,320 │ add[0][0] │ │ │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_1 (Add) │ (None, 20, 20, │ 0 │ max_pooling2d_1[0][… │ │ │ 128) │ │ conv2d_2[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_5 │ (None, 20, 20, │ 0 │ add_1[0][0] │ │ (Activation) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ separable_conv2d_4 │ (None, 20, 20, │ 34,176 │ activation_5[0][0] │ │ (SeparableConv2D) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 20, 20, │ 1,024 │ separable_conv2d_4[… │ │ (BatchNormalizatio… │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_6 │ (None, 20, 20, │ 0 │ batch_normalization… │ │ (Activation) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ separable_conv2d_5 │ (None, 20, 20, │ 68,096 │ activation_6[0][0] │ │ (SeparableConv2D) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 20, 20, │ 1,024 │ separable_conv2d_5[… │ │ (BatchNormalizatio… │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling2d_2 │ (None, 10, 10, │ 0 │ batch_normalization… │ │ (MaxPooling2D) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_3 (Conv2D) │ (None, 10, 10, │ 33,024 │ add_1[0][0] │ │ │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_2 (Add) │ (None, 10, 10, │ 0 │ max_pooling2d_2[0][… │ │ │ 256) │ │ conv2d_3[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_7 │ (None, 10, 10, │ 0 │ add_2[0][0] │ │ (Activation) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose │ (None, 10, 10, │ 590,080 │ activation_7[0][0] │ │ (Conv2DTranspose) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 10, 10, │ 1,024 │ conv2d_transpose[0]… │ │ (BatchNormalizatio… │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_8 │ (None, 10, 10, │ 0 │ batch_normalization… │ │ (Activation) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose_1 │ (None, 10, 10, │ 590,080 │ activation_8[0][0] │ │ (Conv2DTranspose) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 10, 10, │ 1,024 │ conv2d_transpose_1[… │ │ (BatchNormalizatio… │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d_1 │ (None, 20, 20, │ 0 │ add_2[0][0] │ │ (UpSampling2D) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d │ (None, 20, 20, │ 0 │ batch_normalization… │ │ (UpSampling2D) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_4 (Conv2D) │ (None, 20, 20, │ 65,792 │ up_sampling2d_1[0][… │ │ │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_3 (Add) │ (None, 20, 20, │ 0 │ up_sampling2d[0][0], │ │ │ 256) │ │ conv2d_4[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_9 │ (None, 20, 20, │ 0 │ add_3[0][0] │ │ (Activation) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose_2 │ (None, 20, 20, │ 295,040 │ activation_9[0][0] │ │ (Conv2DTranspose) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 20, 20, │ 512 │ conv2d_transpose_2[… │ │ (BatchNormalizatio… │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_10 │ (None, 20, 20, │ 0 │ batch_normalization… │ │ (Activation) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose_3 │ (None, 20, 20, │ 147,584 │ activation_10[0][0] │ │ (Conv2DTranspose) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 20, 20, │ 512 │ conv2d_transpose_3[… │ │ (BatchNormalizatio… │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d_3 │ (None, 40, 40, │ 0 │ add_3[0][0] │ │ (UpSampling2D) │ 256) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d_2 │ (None, 40, 40, │ 0 │ batch_normalization… │ │ (UpSampling2D) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_5 (Conv2D) │ (None, 40, 40, │ 32,896 │ up_sampling2d_3[0][… │ │ │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_4 (Add) │ (None, 40, 40, │ 0 │ up_sampling2d_2[0][… │ │ │ 128) │ │ conv2d_5[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_11 │ (None, 40, 40, │ 0 │ add_4[0][0] │ │ (Activation) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose_4 │ (None, 40, 40, │ 73,792 │ activation_11[0][0] │ │ (Conv2DTranspose) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 40, 40, │ 256 │ conv2d_transpose_4[… │ │ (BatchNormalizatio… │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_12 │ (None, 40, 40, │ 0 │ batch_normalization… │ │ (Activation) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose_5 │ (None, 40, 40, │ 36,928 │ activation_12[0][0] │ │ (Conv2DTranspose) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 40, 40, │ 256 │ conv2d_transpose_5[… │ │ (BatchNormalizatio… │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d_5 │ (None, 80, 80, │ 0 │ add_4[0][0] │ │ (UpSampling2D) │ 128) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d_4 │ (None, 80, 80, │ 0 │ batch_normalization… │ │ (UpSampling2D) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_6 (Conv2D) │ (None, 80, 80, │ 8,256 │ up_sampling2d_5[0][… │ │ │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_5 (Add) │ (None, 80, 80, │ 0 │ up_sampling2d_4[0][… │ │ │ 64) │ │ conv2d_6[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_13 │ (None, 80, 80, │ 0 │ add_5[0][0] │ │ (Activation) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose_6 │ (None, 80, 80, │ 18,464 │ activation_13[0][0] │ │ (Conv2DTranspose) │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 80, 80, │ 128 │ conv2d_transpose_6[… │ │ (BatchNormalizatio… │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_14 │ (None, 80, 80, │ 0 │ batch_normalization… │ │ (Activation) │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_transpose_7 │ (None, 80, 80, │ 9,248 │ activation_14[0][0] │ │ (Conv2DTranspose) │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ batch_normalizatio… │ (None, 80, 80, │ 128 │ conv2d_transpose_7[… │ │ (BatchNormalizatio… │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d_7 │ (None, 160, 160, │ 0 │ add_5[0][0] │ │ (UpSampling2D) │ 64) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ up_sampling2d_6 │ (None, 160, 160, │ 0 │ batch_normalization… │ │ (UpSampling2D) │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_7 (Conv2D) │ (None, 160, 160, │ 2,080 │ up_sampling2d_7[0][… │ │ │ 32) │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_6 (Add) │ (None, 160, 160, │ 0 │ up_sampling2d_6[0][… │ │ │ 32) │ │ conv2d_7[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv2d_8 (Conv2D) │ (None, 160, 160, │ 867 │ add_6[0][0] │ │ │ 3) │ │ │ └─────────────────────┴───────────────────┴─────────┴──────────────────────┘
Total params: 2,058,979 (7.85 MB)
Trainable params: 2,055,203 (7.84 MB)
Non-trainable params: 3,776 (14.75 KB)
Set aside a validation split
Train the model
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1700414690.172044 2226172 device_compiler.h:187] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process. Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 62s - 2s/step - loss: 1.6363 - val_loss: 2.2226 Epoch 2/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 94ms/step - loss: 0.9223 - val_loss: 1.8273 Epoch 3/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 82ms/step - loss: 0.7894 - val_loss: 2.0044 Epoch 4/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.7174 - val_loss: 2.3480 Epoch 5/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 82ms/step - loss: 0.6695 - val_loss: 2.7528 Epoch 6/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.6325 - val_loss: 3.1453 Epoch 7/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 84ms/step - loss: 0.6012 - val_loss: 3.5611 Epoch 8/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 87ms/step - loss: 0.5730 - val_loss: 4.0003 Epoch 9/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 85ms/step - loss: 0.5466 - val_loss: 4.4798 Epoch 10/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 86ms/step - loss: 0.5210 - val_loss: 5.0245 Epoch 11/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 87ms/step - loss: 0.4958 - val_loss: 5.5950 Epoch 12/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 87ms/step - loss: 0.4706 - val_loss: 6.1534 Epoch 13/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 85ms/step - loss: 0.4453 - val_loss: 6.6107 Epoch 14/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.4202 - val_loss: 6.8010 Epoch 15/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 84ms/step - loss: 0.3956 - val_loss: 6.6751 Epoch 16/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.3721 - val_loss: 6.0800 Epoch 17/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 84ms/step - loss: 0.3506 - val_loss: 5.1820 Epoch 18/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 82ms/step - loss: 0.3329 - val_loss: 4.0350 Epoch 19/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 4s - 114ms/step - loss: 0.3216 - val_loss: 3.0513 Epoch 20/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 94ms/step - loss: 0.3595 - val_loss: 2.2567 Epoch 21/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 100ms/step - loss: 0.4417 - val_loss: 1.5873 Epoch 22/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 101ms/step - loss: 0.3531 - val_loss: 1.5798 Epoch 23/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 96ms/step - loss: 0.3353 - val_loss: 1.5525 Epoch 24/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 95ms/step - loss: 0.3392 - val_loss: 1.4625 Epoch 25/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 95ms/step - loss: 0.3596 - val_loss: 0.8867 Epoch 26/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 94ms/step - loss: 0.3528 - val_loss: 0.8021 Epoch 27/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 92ms/step - loss: 0.3237 - val_loss: 0.7986 Epoch 28/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 89ms/step - loss: 0.3198 - val_loss: 0.8533 Epoch 29/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 84ms/step - loss: 0.3272 - val_loss: 1.0588 Epoch 30/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 88ms/step - loss: 0.3164 - val_loss: 1.1889 Epoch 31/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 85ms/step - loss: 0.2987 - val_loss: 0.9518 Epoch 32/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 87ms/step - loss: 0.2749 - val_loss: 0.9011 Epoch 33/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 84ms/step - loss: 0.2595 - val_loss: 0.8872 Epoch 34/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 87ms/step - loss: 0.2552 - val_loss: 1.0221 Epoch 35/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 82ms/step - loss: 0.2628 - val_loss: 1.1553 Epoch 36/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 85ms/step - loss: 0.2788 - val_loss: 2.1549 Epoch 37/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 94ms/step - loss: 0.2870 - val_loss: 1.6282 Epoch 38/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 89ms/step - loss: 0.2702 - val_loss: 1.3201 Epoch 39/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 91ms/step - loss: 0.2569 - val_loss: 1.2364 Epoch 40/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 106ms/step - loss: 0.2523 - val_loss: 1.3673 Epoch 41/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 86ms/step - loss: 0.2570 - val_loss: 1.3999 Epoch 42/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 87ms/step - loss: 0.2680 - val_loss: 0.9976 Epoch 43/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.2558 - val_loss: 1.0209 Epoch 44/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 85ms/step - loss: 0.2403 - val_loss: 1.3271 Epoch 45/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.2414 - val_loss: 1.1993 Epoch 46/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 84ms/step - loss: 0.2516 - val_loss: 1.0532 Epoch 47/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.2695 - val_loss: 1.1183 Epoch 48/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 87ms/step - loss: 0.2555 - val_loss: 1.0432 Epoch 49/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 82ms/step - loss: 0.2290 - val_loss: 0.9444 Epoch 50/50
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9
32/32 - 3s - 83ms/step - loss: 0.1994 - val_loss: 1.2182
<keras.src.callbacks.history.History at 0x7fe01842dab0>