Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
mrdbourke
GitHub Repository: mrdbourke/zero-to-mastery-ml
Path: tree/master/slides
874 views
Name
Size
Last Modified
lesson-1.1.1-what-is-machine-learning-keynote.pdf379.2 KB
lesson-1.1.10-step-5-modelling-part-3-tuning-a-model-keynote.pdf1 MB
lesson-1.1.11-step-5-modelling-part-4-comparing-models-keynote.pdf1.1 MB
lesson-1.1.12-step-6-experimentation-keynote.pdf469.8 KB
lesson-1.1.13-tools-you-will-be-using-keynote.pdf1.3 MB
lesson-1.1.2-what-we-will-focus-on-and-what-you-will-finish-with-keynote.pdf456.4 KB
lesson-1.1.3-a-6-step-machine-learning-project-framework-keynote.pdf1 MB
lesson-1.1.4-machine-learning-problem-definition-keynote.pdf13.1 MB
lesson-1.1.5-step-2-data-keynote.pdf1.3 MB
lesson-1.1.6-step-3-evaluation-keynote.pdf1.3 MB
lesson-1.1.7-step-4-features-keynote.pdf30.3 MB
lesson-1.1.8-step-5-modelling-part-1-3-sets-keynote.pdf740.8 KB
lesson-1.1.9-step-5-modelling-part-2-choosing-a-model-keynote.pdf1 MB
lesson-1.2.1-getting-your-computer-ready-for-machine-learning-with-anaconda-miniconda-and-conda-keynote.pdf1.6 MB
lesson-1.2.2-what-is-conda-keynote.pdf988 KB
lesson-1.2.3-creating-environments-with-miniconda-and-conda-keynote.pdf1.3 MB
lesson-2.1.1-what-is-pandas.pdf1.4 MB
lesson-2.2.2-what-is-numpy-keynote.pdf1.7 MB
lesson-2.3.1-what-is-matplotlib-keynote.pdf2.7 MB
lesson-2.4.1-what-is-scikit-learn-keynote.pdf3.7 MB
lesson-3.0-introduction-to-classification-structured-data-projects.pdf3.6 MB
lesson-3.2-introduction-to-regression-structured-projects.pdf3.3 MB
lesson-4.0-what-is-tensorflow-and-introduction-to-unstructured-data-projects.pdf6.6 MB
lesson-5.0-how-think-about-sharing-and-communicating-your-work.pdf6.5 MB