Path: blob/main/beginner_source/ddp_series_theory.rst
2345 views
`Introduction <ddp_series_intro.html>`__ \|\| **What is DDP** \|\|
`Single-Node Multi-GPU Training <ddp_series_multigpu.html>`__ \|\|
`Fault Tolerance <ddp_series_fault_tolerance.html>`__ \|\|
`Multi-Node training <../intermediate/ddp_series_multinode.html>`__ \|\|
`minGPT Training <../intermediate/ddp_series_minGPT.html>`__
What is Distributed Data Parallel (DDP)
=======================================
Authors: `Suraj Subramanian <https://github.com/subramen>`__
.. grid:: 2
.. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn
:class-card: card-prerequisites
* How DDP works under the hood
* What is ``DistributedSampler``
* How gradients are synchronized across GPUs
.. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites
:class-card: card-prerequisites
* Familiarity with `basic non-distributed training <https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html>`__ in PyTorch
Follow along with the video below or on `youtube <https://www.youtube.com/watch/Cvdhwx-OBBo>`__.
.. raw:: html
<div style="margin-top:10px; margin-bottom:10px;">
<iframe width="560" height="315" src="https://www.youtube.com/embed/Cvdhwx-OBBo" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</div>
This tutorial is a gentle introduction to PyTorch `DistributedDataParallel <https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html>`__ (DDP)
which enables data parallel training in PyTorch. Data parallelism is a way to
process multiple data batches across multiple devices simultaneously
to achieve better performance. In PyTorch, the `DistributedSampler <https://pytorch.org/docs/stable/data.html#torch.utils.data.distributed.DistributedSampler>`__
ensures each device gets a non-overlapping input batch. The model is replicated on all the devices;
each replica calculates gradients and simultaneously synchronizes with the others using the `ring all-reduce
algorithm <https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/>`__.
This `illustrative tutorial <https://pytorch.org/tutorials/intermediate/dist_tuto.html#>`__ provides a more in-depth python view of the mechanics of DDP.
Why you should prefer DDP over ``DataParallel`` (DP)
----------------------------------------------------
`DataParallel <https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html>`__
is an older approach to data parallelism. DP is trivially simple (with just one extra line of code) but it is much less performant.
DDP improves upon the architecture in a few ways:
+---------------------------------------+------------------------------+
| ``DataParallel`` | ``DistributedDataParallel`` |
+=======================================+==============================+
| More overhead; model is replicated | Model is replicated only |
| and destroyed at each forward pass | once |
+---------------------------------------+------------------------------+
| Only supports single-node parallelism | Supports scaling to multiple |
| | machines |
+---------------------------------------+------------------------------+
| Slower; uses multithreading on a | Faster (no GIL contention) |
| single process and runs into Global | because it uses |
| Interpreter Lock (GIL) contention | multiprocessing |
+---------------------------------------+------------------------------+
Further Reading
---------------
- `Multi-GPU training with DDP <ddp_series_multigpu.html>`__ (next tutorial in this series)
- `DDP
API <https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html>`__
- `DDP Internal
Design <https://pytorch.org/docs/master/notes/ddp.html#internal-design>`__
- `DDP Mechanics Tutorial <https://pytorch.org/tutorials/intermediate/dist_tuto.html#>`__