Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Path: blob/main/beginner_source/ddp_series_theory.rst
Views: 712
`Introduction <ddp_series_intro.html>`__ \|\| **What is DDP** \|\| `Single-Node Multi-GPU Training <ddp_series_multigpu.html>`__ \|\| `Fault Tolerance <ddp_series_fault_tolerance.html>`__ \|\| `Multi-Node training <../intermediate/ddp_series_multinode.html>`__ \|\| `minGPT Training <../intermediate/ddp_series_minGPT.html>`__ What is Distributed Data Parallel (DDP) ======================================= Authors: `Suraj Subramanian <https://github.com/subramen>`__ .. grid:: 2 .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn :class-card: card-prerequisites * How DDP works under the hood * What is ``DistributedSampler`` * How gradients are synchronized across GPUs .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites :class-card: card-prerequisites * Familiarity with `basic non-distributed training <https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html>`__ in PyTorch Follow along with the video below or on `youtube <https://www.youtube.com/watch/Cvdhwx-OBBo>`__. .. raw:: html <div style="margin-top:10px; margin-bottom:10px;"> <iframe width="560" height="315" src="https://www.youtube.com/embed/Cvdhwx-OBBo" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </div> This tutorial is a gentle introduction to PyTorch `DistributedDataParallel <https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html>`__ (DDP) which enables data parallel training in PyTorch. Data parallelism is a way to process multiple data batches across multiple devices simultaneously to achieve better performance. In PyTorch, the `DistributedSampler <https://pytorch.org/docs/stable/data.html#torch.utils.data.distributed.DistributedSampler>`__ ensures each device gets a non-overlapping input batch. The model is replicated on all the devices; each replica calculates gradients and simultaneously synchronizes with the others using the `ring all-reduce algorithm <https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/>`__. This `illustrative tutorial <https://pytorch.org/tutorials/intermediate/dist_tuto.html#>`__ provides a more in-depth python view of the mechanics of DDP. Why you should prefer DDP over ``DataParallel`` (DP) ---------------------------------------------------- `DataParallel <https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html>`__ is an older approach to data parallelism. DP is trivially simple (with just one extra line of code) but it is much less performant. DDP improves upon the architecture in a few ways: +---------------------------------------+------------------------------+ | ``DataParallel`` | ``DistributedDataParallel`` | +=======================================+==============================+ | More overhead; model is replicated | Model is replicated only | | and destroyed at each forward pass | once | +---------------------------------------+------------------------------+ | Only supports single-node parallelism | Supports scaling to multiple | | | machines | +---------------------------------------+------------------------------+ | Slower; uses multithreading on a | Faster (no GIL contention) | | single process and runs into Global | because it uses | | Interpreter Lock (GIL) contention | multiprocessing | +---------------------------------------+------------------------------+ Further Reading --------------- - `Multi-GPU training with DDP <ddp_series_multigpu.html>`__ (next tutorial in this series) - `DDP API <https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html>`__ - `DDP Internal Design <https://pytorch.org/docs/master/notes/ddp.html#internal-design>`__ - `DDP Mechanics Tutorial <https://pytorch.org/tutorials/intermediate/dist_tuto.html#>`__