CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
pytorch

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: pytorch/tutorials
Path: blob/main/recipes_source/recipes/timer_quick_start.py
Views: 713
1
"""
2
Timer quick start
3
=================
4
5
In this tutorial, we're going to cover the primary APIs of
6
`torch.utils.benchmark.Timer`. The PyTorch Timer is based on the
7
`timeit.Timer <https://docs.python.org/3/library/timeit.html#timeit.Timer>`__
8
API, with several PyTorch specific modifications. Familiarity with the
9
builtin `Timer` class is not required for this tutorial, however we assume
10
that the reader is familiar with the fundamentals of performance work.
11
12
For a more comprehensive performance tuning tutorial, see
13
`PyTorch Benchmark <https://pytorch.org/tutorials/recipes/recipes/benchmark.html>`__.
14
15
16
**Contents:**
17
1. `Defining a Timer <#defining-a-timer>`__
18
2. `Wall time: Timer.blocked_autorange(...) <#wall-time-timer-blocked-autorange>`__
19
3. `C++ snippets <#c-snippets>`__
20
4. `Instruction counts: Timer.collect_callgrind(...) <#instruction-counts-timer-collect-callgrind>`__
21
5. `Instruction counts: Delving deeper <#instruction-counts-delving-deeper>`__
22
6. `A/B testing with Callgrind <#a-b-testing-with-callgrind>`__
23
7. `Wrapping up <#wrapping-up>`__
24
8. `Footnotes <#footnotes>`__
25
"""
26
27
28
###############################################################################
29
# 1. Defining a Timer
30
# ~~~~~~~~~~~~~~~~~~~
31
#
32
# A `Timer` serves as a task definition.
33
#
34
35
from torch.utils.benchmark import Timer
36
37
timer = Timer(
38
# The computation which will be run in a loop and timed.
39
stmt="x * y",
40
41
# `setup` will be run before calling the measurement loop, and is used to
42
# populate any state which is needed by `stmt`
43
setup="""
44
x = torch.ones((128,))
45
y = torch.ones((128,))
46
""",
47
48
# Alternatively, ``globals`` can be used to pass variables from the outer scope.
49
#
50
# globals={
51
# "x": torch.ones((128,)),
52
# "y": torch.ones((128,)),
53
# },
54
55
# Control the number of threads that PyTorch uses. (Default: 1)
56
num_threads=1,
57
)
58
59
###############################################################################
60
# 2. Wall time: ``Timer.blocked_autorange(...)``
61
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
#
63
# This method will handle details such as picking a suitable number if repeats,
64
# fixing the number of threads, and providing a convenient representation of
65
# the results.
66
#
67
68
# Measurement objects store the results of multiple repeats, and provide
69
# various utility features.
70
from torch.utils.benchmark import Measurement
71
72
m: Measurement = timer.blocked_autorange(min_run_time=1)
73
print(m)
74
75
###############################################################################
76
# .. code-block:: none
77
# :caption: **Snippet wall time.**
78
#
79
# <torch.utils.benchmark.utils.common.Measurement object at 0x7f1929a38ed0>
80
# x * y
81
# setup:
82
# x = torch.ones((128,))
83
# y = torch.ones((128,))
84
#
85
# Median: 2.34 us
86
# IQR: 0.07 us (2.31 to 2.38)
87
# 424 measurements, 1000 runs per measurement, 1 thread
88
#
89
90
###############################################################################
91
# 3. C++ snippets
92
# ~~~~~~~~~~~~~~~
93
#
94
95
from torch.utils.benchmark import Language
96
97
cpp_timer = Timer(
98
"x * y;",
99
"""
100
auto x = torch::ones({128});
101
auto y = torch::ones({128});
102
""",
103
language=Language.CPP,
104
)
105
106
print(cpp_timer.blocked_autorange(min_run_time=1))
107
108
###############################################################################
109
# .. code-block:: none
110
# :caption: **C++ snippet wall time.**
111
#
112
# <torch.utils.benchmark.utils.common.Measurement object at 0x7f192b019ed0>
113
# x * y;
114
# setup:
115
# auto x = torch::ones({128});
116
# auto y = torch::ones({128});
117
#
118
# Median: 1.21 us
119
# IQR: 0.03 us (1.20 to 1.23)
120
# 83 measurements, 10000 runs per measurement, 1 thread
121
#
122
123
###############################################################################
124
# Unsurprisingly, the C++ snippet is both faster and has lower variation.
125
#
126
127
###############################################################################
128
# 4. Instruction counts: ``Timer.collect_callgrind(...)``
129
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
130
#
131
# For deep dive investigations, ``Timer.collect_callgrind`` wraps
132
# `Callgrind <https://valgrind.org/docs/manual/cl-manual.html>`__ in order to
133
# collect instruction counts. These are useful as they offer fine grained and
134
# deterministic (or very low noise in the case of Python) insights into how a
135
# snippet is run.
136
#
137
138
from torch.utils.benchmark import CallgrindStats, FunctionCounts
139
140
stats: CallgrindStats = cpp_timer.collect_callgrind()
141
print(stats)
142
143
###############################################################################
144
# .. code-block:: none
145
# :caption: **C++ Callgrind stats (summary)**
146
#
147
# <torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7f1929a35850>
148
# x * y;
149
# setup:
150
# auto x = torch::ones({128});
151
# auto y = torch::ones({128});
152
#
153
# All Noisy symbols removed
154
# Instructions: 563600 563600
155
# Baseline: 0 0
156
# 100 runs per measurement, 1 thread
157
#
158
159
###############################################################################
160
# 5. Instruction counts: Delving deeper
161
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162
#
163
# The string representation of ``CallgrindStats`` is similar to that of
164
# Measurement. `Noisy symbols` are a Python concept (removing calls in the
165
# CPython interpreter which are known to be noisy).
166
#
167
# For more detailed analysis, however, we will want to look at specific calls.
168
# ``CallgrindStats.stats()`` returns a ``FunctionCounts`` object to make this easier.
169
# Conceptually, ``FunctionCounts`` can be thought of as a tuple of pairs with some
170
# utility methods, where each pair is `(number of instructions, file path and
171
# function name)`.
172
#
173
# A note on paths:
174
# One generally doesn't care about absolute path. For instance, the full path
175
# and function name for a multiply call is something like:
176
#
177
# .. code-block:: sh
178
#
179
# /the/prefix/to/your/pytorch/install/dir/pytorch/build/aten/src/ATen/core/TensorMethods.cpp:at::Tensor::mul(at::Tensor const&) const [/the/path/to/your/conda/install/miniconda3/envs/ab_ref/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so]
180
#
181
# when in reality, all of the information that we're interested in can be
182
# represented in:
183
#
184
# .. code-block:: sh
185
#
186
# build/aten/src/ATen/core/TensorMethods.cpp:at::Tensor::mul(at::Tensor const&) const
187
#
188
# ``CallgrindStats.as_standardized()`` makes a best effort to strip low signal
189
# portions of the file path, as well as the shared object and is generally
190
# recommended.
191
#
192
193
inclusive_stats = stats.as_standardized().stats(inclusive=False)
194
print(inclusive_stats[:10])
195
196
###############################################################################
197
# .. code-block:: none
198
# :caption: **C++ Callgrind stats (detailed)**
199
#
200
# torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0x7f192a6dfd90>
201
# 47264 ???:_int_free
202
# 25963 ???:_int_malloc
203
# 19900 build/../aten/src/ATen/TensorIter ... (at::TensorIteratorConfig const&)
204
# 18000 ???:__tls_get_addr
205
# 13500 ???:malloc
206
# 11300 build/../c10/util/SmallVector.h:a ... (at::TensorIteratorConfig const&)
207
# 10345 ???:_int_memalign
208
# 10000 build/../aten/src/ATen/TensorIter ... (at::TensorIteratorConfig const&)
209
# 9200 ???:free
210
# 8000 build/../c10/util/SmallVector.h:a ... IteratorBase::get_strides() const
211
#
212
# Total: 173472
213
#
214
215
###############################################################################
216
# That's still quite a lot to digest. Let's use the `FunctionCounts.transform`
217
# method to trim some of the function path, and discard the function called.
218
# When we do, the counts of any collisions (e.g. `foo.h:a()` and `foo.h:b()`
219
# will both map to `foo.h`) will be added together.
220
#
221
222
import os
223
import re
224
225
def group_by_file(fn_name: str):
226
if fn_name.startswith("???"):
227
fn_dir, fn_file = fn_name.split(":")[:2]
228
else:
229
fn_dir, fn_file = os.path.split(fn_name.split(":")[0])
230
fn_dir = re.sub("^.*build/../", "", fn_dir)
231
fn_dir = re.sub("^.*torch/", "torch/", fn_dir)
232
233
return f"{fn_dir:<15} {fn_file}"
234
235
print(inclusive_stats.transform(group_by_file)[:10])
236
237
###############################################################################
238
# .. code-block:: none
239
# :caption: **Callgrind stats (condensed)**
240
#
241
# <torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0x7f192995d750>
242
# 118200 aten/src/ATen TensorIterator.cpp
243
# 65000 c10/util SmallVector.h
244
# 47264 ??? _int_free
245
# 25963 ??? _int_malloc
246
# 20900 c10/util intrusive_ptr.h
247
# 18000 ??? __tls_get_addr
248
# 15900 c10/core TensorImpl.h
249
# 15100 c10/core CPUAllocator.cpp
250
# 13500 ??? malloc
251
# 12500 c10/core TensorImpl.cpp
252
#
253
# Total: 352327
254
#
255
256
###############################################################################
257
# 6. A/B testing with ``Callgrind``
258
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
259
#
260
# One of the most useful features of instruction counts is they allow fine
261
# grained comparison of computation, which is critical when analyzing
262
# performance.
263
#
264
# To see this in action, lets compare our multiplication of two size 128
265
# Tensors with a {128} x {1} multiplication, which will broadcast the second
266
# Tensor:
267
# result = {a0 * b0, a1 * b0, ..., a127 * b0}
268
#
269
270
broadcasting_stats = Timer(
271
"x * y;",
272
"""
273
auto x = torch::ones({128});
274
auto y = torch::ones({1});
275
""",
276
language=Language.CPP,
277
).collect_callgrind().as_standardized().stats(inclusive=False)
278
279
###############################################################################
280
# Often we want to A/B test two different environments. (e.g. testing a PR, or
281
# experimenting with compile flags.) This is quite simple, as ``CallgrindStats``,
282
# ``FunctionCounts``, and Measurement are all pickleable. Simply save measurements
283
# from each environment, and load them in a single process for analysis.
284
#
285
286
import pickle
287
288
# Let's round trip `broadcasting_stats` just to show that we can.
289
broadcasting_stats = pickle.loads(pickle.dumps(broadcasting_stats))
290
291
292
# And now to diff the two tasks:
293
delta = broadcasting_stats - inclusive_stats
294
295
def extract_fn_name(fn: str):
296
"""Trim everything except the function name."""
297
fn = ":".join(fn.split(":")[1:])
298
return re.sub(r"\(.+\)", "(...)", fn)
299
300
# We use `.transform` to make the diff readable:
301
print(delta.transform(extract_fn_name))
302
303
304
###############################################################################
305
# .. code-block:: none
306
# :caption: **Instruction count delta**
307
#
308
# <torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0x7f192995d750>
309
# 17600 at::TensorIteratorBase::compute_strides(...)
310
# 12700 at::TensorIteratorBase::allocate_or_resize_outputs()
311
# 10200 c10::SmallVectorImpl<long>::operator=(...)
312
# 7400 at::infer_size(...)
313
# 6200 at::TensorIteratorBase::invert_perm(...) const
314
# 6064 _int_free
315
# 5100 at::TensorIteratorBase::reorder_dimensions()
316
# 4300 malloc
317
# 4300 at::TensorIteratorBase::compatible_stride(...) const
318
# ...
319
# -28 _int_memalign
320
# -100 c10::impl::check_tensor_options_and_extract_memory_format(...)
321
# -300 __memcmp_avx2_movbe
322
# -400 at::detail::empty_cpu(...)
323
# -1100 at::TensorIteratorBase::numel() const
324
# -1300 void at::native::(...)
325
# -2400 c10::TensorImpl::is_contiguous(...) const
326
# -6100 at::TensorIteratorBase::compute_fast_setup_type(...)
327
# -22600 at::TensorIteratorBase::fast_set_up(...)
328
#
329
# Total: 58091
330
#
331
332
###############################################################################
333
# So the broadcasting version takes an extra 580 instructions per call (recall
334
# that we're collecting 100 runs per sample), or about 10%. There are quite a
335
# few ``TensorIterator`` calls, so lets drill down to those. ``FunctionCounts.filter``
336
# makes this easy.
337
#
338
339
print(delta.transform(extract_fn_name).filter(lambda fn: "TensorIterator" in fn))
340
341
###############################################################################
342
# .. code-block:: none
343
# :caption: **Instruction count delta (filter)**
344
#
345
# <torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0x7f19299544d0>
346
# 17600 at::TensorIteratorBase::compute_strides(...)
347
# 12700 at::TensorIteratorBase::allocate_or_resize_outputs()
348
# 6200 at::TensorIteratorBase::invert_perm(...) const
349
# 5100 at::TensorIteratorBase::reorder_dimensions()
350
# 4300 at::TensorIteratorBase::compatible_stride(...) const
351
# 4000 at::TensorIteratorBase::compute_shape(...)
352
# 2300 at::TensorIteratorBase::coalesce_dimensions()
353
# 1600 at::TensorIteratorBase::build(...)
354
# -1100 at::TensorIteratorBase::numel() const
355
# -6100 at::TensorIteratorBase::compute_fast_setup_type(...)
356
# -22600 at::TensorIteratorBase::fast_set_up(...)
357
#
358
# Total: 24000
359
#
360
361
###############################################################################
362
# This makes plain what is going on: there is a fast path in ``TensorIterator``
363
# setup, but in the {128} x {1} case we miss it and have to do a more general
364
# analysis which is more expensive. The most prominent call omitted by the
365
# filter is `c10::SmallVectorImpl<long>::operator=(...)`, which is also part
366
# of the more general setup.
367
#
368
369
###############################################################################
370
# 7. Wrapping up
371
# ~~~~~~~~~~~~~~
372
#
373
# In summary, use `Timer.blocked_autorange` to collect wall times. If timing
374
# variation is too high, increase `min_run_time`, or move to C++ snippets if
375
# convenient.
376
#
377
# For fine grained analysis, use `Timer.collect_callgrind` to measure
378
# instruction counts and `FunctionCounts.(__add__ / __sub__ / transform / filter)`
379
# to slice-and-dice them.
380
#
381
382
###############################################################################
383
# 8. Footnotes
384
# ~~~~~~~~~~~~
385
#
386
# - Implied ``import torch``
387
# If `globals` does not contain "torch", Timer will automatically
388
# populate it. This means that ``Timer("torch.empty(())")`` will work.
389
# (Though other imports should be placed in `setup`,
390
# e.g. ``Timer("np.zeros(())", "import numpy as np")``)
391
#
392
# - ``REL_WITH_DEB_INFO``
393
# In order to provide full information about the PyTorch internals which
394
# are executed, ``Callgrind`` needs access to C++ debug symbols. This is
395
# accomplished by setting ``REL_WITH_DEB_INFO=1`` when building PyTorch.
396
# Otherwise function calls will be opaque. (The resultant ``CallgrindStats``
397
# will warn if debug symbols are missing.)
398
399