Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Path: blob/main/recipes_source/torch_compile_backend_ipex.rst
Views: 712
Intel® Extension for PyTorch* Backend on Intel® CPUs ==================================================== To work better with `torch.compile` on Intel® CPUs, Intel® Extension for PyTorch* implements a backend ``ipex``. It targets to improve hardware resource usage efficiency on Intel platforms for better performance. The `ipex` backend is implemented with further customizations designed in Intel® Extension for PyTorch* for the model compilation. Usage Example ~~~~~~~~~~~~~ Train FP32 ---------- Check the example below to learn how to utilize the `ipex` backend with `torch.compile` for model training with FP32 data type. .. code:: python import torch import torchvision LR = 0.001 DOWNLOAD = True DATA = 'datasets/cifar10/' transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=128 ) model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9) model.train() #################### code changes #################### import intel_extension_for_pytorch as ipex # Invoke the following API optionally, to apply frontend optimizations model, optimizer = ipex.optimize(model, optimizer=optimizer) compile_model = torch.compile(model, backend="ipex") ###################################################### for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = compile_model(data) loss = criterion(output, target) loss.backward() optimizer.step() Train BF16 ---------- Check the example below to learn how to utilize the `ipex` backend with `torch.compile` for model training with BFloat16 data type. .. code:: python import torch import torchvision LR = 0.001 DOWNLOAD = True DATA = 'datasets/cifar10/' transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=128 ) model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9) model.train() #################### code changes #################### import intel_extension_for_pytorch as ipex # Invoke the following API optionally, to apply frontend optimizations model, optimizer = ipex.optimize(model, dtype=torch.bfloat16, optimizer=optimizer) compile_model = torch.compile(model, backend="ipex") ###################################################### with torch.cpu.amp.autocast(): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = compile_model(data) loss = criterion(output, target) loss.backward() optimizer.step() Inference FP32 -------------- Check the example below to learn how to utilize the `ipex` backend with `torch.compile` for model inference with FP32 data type. .. code:: python import torch import torchvision.models as models model = models.resnet50(weights='ResNet50_Weights.DEFAULT') model.eval() data = torch.rand(1, 3, 224, 224) #################### code changes #################### import intel_extension_for_pytorch as ipex # Invoke the following API optionally, to apply frontend optimizations model = ipex.optimize(model, weights_prepack=False) compile_model = torch.compile(model, backend="ipex") ###################################################### with torch.no_grad(): compile_model(data) Inference BF16 -------------- Check the example below to learn how to utilize the `ipex` backend with `torch.compile` for model inference with BFloat16 data type. .. code:: python import torch import torchvision.models as models model = models.resnet50(weights='ResNet50_Weights.DEFAULT') model.eval() data = torch.rand(1, 3, 224, 224) #################### code changes #################### import intel_extension_for_pytorch as ipex # Invoke the following API optionally, to apply frontend optimizations model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False) compile_model = torch.compile(model, backend="ipex") ###################################################### with torch.no_grad(), torch.autocast(device_type="cpu", dtype=torch.bfloat16): compile_model(data)