Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm/boot/compressed/head.S
29269 views
1
/* SPDX-License-Identifier: GPL-2.0-only */
2
/*
3
* linux/arch/arm/boot/compressed/head.S
4
*
5
* Copyright (C) 1996-2002 Russell King
6
* Copyright (C) 2004 Hyok S. Choi (MPU support)
7
*/
8
#include <linux/linkage.h>
9
#include <asm/assembler.h>
10
#include <asm/v7m.h>
11
12
#include "efi-header.S"
13
14
#ifdef __ARMEB__
15
#define OF_DT_MAGIC 0xd00dfeed
16
#else
17
#define OF_DT_MAGIC 0xedfe0dd0
18
#endif
19
20
AR_CLASS( .arch armv7-a )
21
M_CLASS( .arch armv7-m )
22
23
/*
24
* Debugging stuff
25
*
26
* Note that these macros must not contain any code which is not
27
* 100% relocatable. Any attempt to do so will result in a crash.
28
* Please select one of the following when turning on debugging.
29
*/
30
#ifdef DEBUG
31
32
#if defined(CONFIG_DEBUG_ICEDCC)
33
34
#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K) || defined(CONFIG_CPU_V7)
35
.macro loadsp, rb, tmp1, tmp2
36
.endm
37
.macro writeb, ch, rb, tmp
38
mcr p14, 0, \ch, c0, c5, 0
39
.endm
40
#elif defined(CONFIG_CPU_XSCALE)
41
.macro loadsp, rb, tmp1, tmp2
42
.endm
43
.macro writeb, ch, rb, tmp
44
mcr p14, 0, \ch, c8, c0, 0
45
.endm
46
#else
47
.macro loadsp, rb, tmp1, tmp2
48
.endm
49
.macro writeb, ch, rb, tmp
50
mcr p14, 0, \ch, c1, c0, 0
51
.endm
52
#endif
53
54
#else
55
56
#include CONFIG_DEBUG_LL_INCLUDE
57
58
.macro writeb, ch, rb, tmp
59
#ifdef CONFIG_DEBUG_UART_FLOW_CONTROL
60
waituartcts \tmp, \rb
61
#endif
62
waituarttxrdy \tmp, \rb
63
senduart \ch, \rb
64
busyuart \tmp, \rb
65
.endm
66
67
#if defined(CONFIG_ARCH_SA1100)
68
.macro loadsp, rb, tmp1, tmp2
69
mov \rb, #0x80000000 @ physical base address
70
add \rb, \rb, #0x00010000 @ Ser1
71
.endm
72
#else
73
.macro loadsp, rb, tmp1, tmp2
74
addruart \rb, \tmp1, \tmp2
75
.endm
76
#endif
77
#endif
78
#endif
79
80
.macro kputc,val
81
mov r0, \val
82
bl putc
83
.endm
84
85
.macro kphex,val,len
86
mov r0, \val
87
mov r1, #\len
88
bl phex
89
.endm
90
91
/*
92
* Debug kernel copy by printing the memory addresses involved
93
*/
94
.macro dbgkc, begin, end, cbegin, cend
95
#ifdef DEBUG
96
kputc #'C'
97
kputc #':'
98
kputc #'0'
99
kputc #'x'
100
kphex \begin, 8 /* Start of compressed kernel */
101
kputc #'-'
102
kputc #'0'
103
kputc #'x'
104
kphex \end, 8 /* End of compressed kernel */
105
kputc #'-'
106
kputc #'>'
107
kputc #'0'
108
kputc #'x'
109
kphex \cbegin, 8 /* Start of kernel copy */
110
kputc #'-'
111
kputc #'0'
112
kputc #'x'
113
kphex \cend, 8 /* End of kernel copy */
114
kputc #'\n'
115
#endif
116
.endm
117
118
/*
119
* Debug print of the final appended DTB location
120
*/
121
.macro dbgadtb, begin, size
122
#ifdef DEBUG
123
kputc #'D'
124
kputc #'T'
125
kputc #'B'
126
kputc #':'
127
kputc #'0'
128
kputc #'x'
129
kphex \begin, 8 /* Start of appended DTB */
130
kputc #' '
131
kputc #'('
132
kputc #'0'
133
kputc #'x'
134
kphex \size, 8 /* Size of appended DTB */
135
kputc #')'
136
kputc #'\n'
137
#endif
138
.endm
139
140
.macro enable_cp15_barriers, reg
141
mrc p15, 0, \reg, c1, c0, 0 @ read SCTLR
142
tst \reg, #(1 << 5) @ CP15BEN bit set?
143
bne .L_\@
144
orr \reg, \reg, #(1 << 5) @ CP15 barrier instructions
145
mcr p15, 0, \reg, c1, c0, 0 @ write SCTLR
146
ARM( .inst 0xf57ff06f @ v7+ isb )
147
THUMB( isb )
148
.L_\@:
149
.endm
150
151
/*
152
* The kernel build system appends the size of the
153
* decompressed kernel at the end of the compressed data
154
* in little-endian form.
155
*/
156
.macro get_inflated_image_size, res:req, tmp1:req, tmp2:req
157
adr \res, .Linflated_image_size_offset
158
ldr \tmp1, [\res]
159
add \tmp1, \tmp1, \res @ address of inflated image size
160
161
ldrb \res, [\tmp1] @ get_unaligned_le32
162
ldrb \tmp2, [\tmp1, #1]
163
orr \res, \res, \tmp2, lsl #8
164
ldrb \tmp2, [\tmp1, #2]
165
ldrb \tmp1, [\tmp1, #3]
166
orr \res, \res, \tmp2, lsl #16
167
orr \res, \res, \tmp1, lsl #24
168
.endm
169
170
.macro be32tocpu, val, tmp
171
#ifndef __ARMEB__
172
/* convert to little endian */
173
rev_l \val, \tmp
174
#endif
175
.endm
176
177
.section ".start", "ax"
178
/*
179
* sort out different calling conventions
180
*/
181
.align
182
/*
183
* Always enter in ARM state for CPUs that support the ARM ISA.
184
* As of today (2014) that's exactly the members of the A and R
185
* classes.
186
*/
187
AR_CLASS( .arm )
188
start:
189
.type start,#function
190
/*
191
* These 7 nops along with the 1 nop immediately below for
192
* !THUMB2 form 8 nops that make the compressed kernel bootable
193
* on legacy ARM systems that were assuming the kernel in a.out
194
* binary format. The boot loaders on these systems would
195
* jump 32 bytes into the image to skip the a.out header.
196
* with these 8 nops filling exactly 32 bytes, things still
197
* work as expected on these legacy systems. Thumb2 mode keeps
198
* 7 of the nops as it turns out that some boot loaders
199
* were patching the initial instructions of the kernel, i.e
200
* had started to exploit this "patch area".
201
*/
202
__initial_nops
203
.rept 5
204
__nop
205
.endr
206
#ifndef CONFIG_THUMB2_KERNEL
207
__nop
208
#else
209
AR_CLASS( sub pc, pc, #3 ) @ A/R: switch to Thumb2 mode
210
M_CLASS( nop.w ) @ M: already in Thumb2 mode
211
.thumb
212
#endif
213
W(b) 1f
214
215
.word _magic_sig @ Magic numbers to help the loader
216
.word _magic_start @ absolute load/run zImage address
217
.word _magic_end @ zImage end address
218
.word 0x04030201 @ endianness flag
219
.word 0x45454545 @ another magic number to indicate
220
.word _magic_table @ additional data table
221
222
__EFI_HEADER
223
1:
224
ARM_BE8( setend be ) @ go BE8 if compiled for BE8
225
AR_CLASS( mrs r9, cpsr )
226
#ifdef CONFIG_ARM_VIRT_EXT
227
bl __hyp_stub_install @ get into SVC mode, reversibly
228
#endif
229
mov r7, r1 @ save architecture ID
230
mov r8, r2 @ save atags pointer
231
232
#ifndef CONFIG_CPU_V7M
233
/*
234
* Booting from Angel - need to enter SVC mode and disable
235
* FIQs/IRQs (numeric definitions from angel arm.h source).
236
* We only do this if we were in user mode on entry.
237
*/
238
mrs r2, cpsr @ get current mode
239
tst r2, #3 @ not user?
240
bne not_angel
241
mov r0, #0x17 @ angel_SWIreason_EnterSVC
242
ARM( swi 0x123456 ) @ angel_SWI_ARM
243
THUMB( svc 0xab ) @ angel_SWI_THUMB
244
not_angel:
245
safe_svcmode_maskall r0
246
msr spsr_cxsf, r9 @ Save the CPU boot mode in
247
@ SPSR
248
#endif
249
/*
250
* Note that some cache flushing and other stuff may
251
* be needed here - is there an Angel SWI call for this?
252
*/
253
254
/*
255
* some architecture specific code can be inserted
256
* by the linker here, but it should preserve r7, r8, and r9.
257
*/
258
259
.text
260
261
#ifdef CONFIG_AUTO_ZRELADDR
262
/*
263
* Find the start of physical memory. As we are executing
264
* without the MMU on, we are in the physical address space.
265
* We just need to get rid of any offset by aligning the
266
* address.
267
*
268
* This alignment is a balance between the requirements of
269
* different platforms - we have chosen 128MB to allow
270
* platforms which align the start of their physical memory
271
* to 128MB to use this feature, while allowing the zImage
272
* to be placed within the first 128MB of memory on other
273
* platforms. Increasing the alignment means we place
274
* stricter alignment requirements on the start of physical
275
* memory, but relaxing it means that we break people who
276
* are already placing their zImage in (eg) the top 64MB
277
* of this range.
278
*/
279
mov r0, pc
280
and r0, r0, #0xf8000000
281
#ifdef CONFIG_USE_OF
282
adr r1, LC1
283
#ifdef CONFIG_ARM_APPENDED_DTB
284
/*
285
* Look for an appended DTB. If found, we cannot use it to
286
* validate the calculated start of physical memory, as its
287
* memory nodes may need to be augmented by ATAGS stored at
288
* an offset from the same start of physical memory.
289
*/
290
ldr r2, [r1, #4] @ get &_edata
291
add r2, r2, r1 @ relocate it
292
ldr r2, [r2] @ get DTB signature
293
ldr r3, =OF_DT_MAGIC
294
cmp r2, r3 @ do we have a DTB there?
295
beq 1f @ if yes, skip validation
296
#endif /* CONFIG_ARM_APPENDED_DTB */
297
298
/*
299
* Make sure we have some stack before calling C code.
300
* No GOT fixup has occurred yet, but none of the code we're
301
* about to call uses any global variables.
302
*/
303
ldr sp, [r1] @ get stack location
304
add sp, sp, r1 @ apply relocation
305
306
/* Validate calculated start against passed DTB */
307
mov r1, r8
308
bl fdt_check_mem_start
309
1:
310
#endif /* CONFIG_USE_OF */
311
/* Determine final kernel image address. */
312
add r4, r0, #TEXT_OFFSET
313
#else
314
ldr r4, =zreladdr
315
#endif
316
317
/*
318
* Set up a page table only if it won't overwrite ourself.
319
* That means r4 < pc || r4 - 16k page directory > &_end.
320
* Given that r4 > &_end is most unfrequent, we add a rough
321
* additional 1MB of room for a possible appended DTB.
322
*/
323
mov r0, pc
324
cmp r0, r4
325
ldrcc r0, .Lheadroom
326
addcc r0, r0, pc
327
cmpcc r4, r0
328
orrcc r4, r4, #1 @ remember we skipped cache_on
329
blcs cache_on
330
331
restart: adr r0, LC1
332
ldr sp, [r0]
333
ldr r6, [r0, #4]
334
add sp, sp, r0
335
add r6, r6, r0
336
337
get_inflated_image_size r9, r10, lr
338
339
#ifndef CONFIG_ZBOOT_ROM
340
/* malloc space is above the relocated stack (64k max) */
341
add r10, sp, #MALLOC_SIZE
342
#else
343
/*
344
* With ZBOOT_ROM the bss/stack is non relocatable,
345
* but someone could still run this code from RAM,
346
* in which case our reference is _edata.
347
*/
348
mov r10, r6
349
#endif
350
351
mov r5, #0 @ init dtb size to 0
352
#ifdef CONFIG_ARM_APPENDED_DTB
353
/*
354
* r4 = final kernel address (possibly with LSB set)
355
* r5 = appended dtb size (still unknown)
356
* r6 = _edata
357
* r7 = architecture ID
358
* r8 = atags/device tree pointer
359
* r9 = size of decompressed image
360
* r10 = end of this image, including bss/stack/malloc space if non XIP
361
* sp = stack pointer
362
*
363
* if there are device trees (dtb) appended to zImage, advance r10 so that the
364
* dtb data will get relocated along with the kernel if necessary.
365
*/
366
367
ldr lr, [r6, #0]
368
ldr r1, =OF_DT_MAGIC
369
cmp lr, r1
370
bne dtb_check_done @ not found
371
372
#ifdef CONFIG_ARM_ATAG_DTB_COMPAT
373
/*
374
* OK... Let's do some funky business here.
375
* If we do have a DTB appended to zImage, and we do have
376
* an ATAG list around, we want the later to be translated
377
* and folded into the former here. No GOT fixup has occurred
378
* yet, but none of the code we're about to call uses any
379
* global variable.
380
*/
381
382
/* Get the initial DTB size */
383
ldr r5, [r6, #4]
384
be32tocpu r5, r1
385
dbgadtb r6, r5
386
/* 50% DTB growth should be good enough */
387
add r5, r5, r5, lsr #1
388
/* preserve 64-bit alignment */
389
add r5, r5, #7
390
bic r5, r5, #7
391
/* clamp to 32KB min and 1MB max */
392
cmp r5, #(1 << 15)
393
movlo r5, #(1 << 15)
394
cmp r5, #(1 << 20)
395
movhi r5, #(1 << 20)
396
/* temporarily relocate the stack past the DTB work space */
397
add sp, sp, r5
398
399
mov r0, r8
400
mov r1, r6
401
mov r2, r5
402
bl atags_to_fdt
403
404
/*
405
* If returned value is 1, there is no ATAG at the location
406
* pointed by r8. Try the typical 0x100 offset from start
407
* of RAM and hope for the best.
408
*/
409
cmp r0, #1
410
sub r0, r4, #TEXT_OFFSET
411
bic r0, r0, #1
412
add r0, r0, #0x100
413
mov r1, r6
414
mov r2, r5
415
bleq atags_to_fdt
416
417
sub sp, sp, r5
418
#endif
419
420
mov r8, r6 @ use the appended device tree
421
422
/*
423
* Make sure that the DTB doesn't end up in the final
424
* kernel's .bss area. To do so, we adjust the decompressed
425
* kernel size to compensate if that .bss size is larger
426
* than the relocated code.
427
*/
428
ldr r5, =_kernel_bss_size
429
adr r1, wont_overwrite
430
sub r1, r6, r1
431
subs r1, r5, r1
432
addhi r9, r9, r1
433
434
/* Get the current DTB size */
435
ldr r5, [r6, #4]
436
be32tocpu r5, r1
437
438
/* preserve 64-bit alignment */
439
add r5, r5, #7
440
bic r5, r5, #7
441
442
/* relocate some pointers past the appended dtb */
443
add r6, r6, r5
444
add r10, r10, r5
445
add sp, sp, r5
446
dtb_check_done:
447
#endif
448
449
/*
450
* Check to see if we will overwrite ourselves.
451
* r4 = final kernel address (possibly with LSB set)
452
* r9 = size of decompressed image
453
* r10 = end of this image, including bss/stack/malloc space if non XIP
454
* We basically want:
455
* r4 - 16k page directory >= r10 -> OK
456
* r4 + image length <= address of wont_overwrite -> OK
457
* Note: the possible LSB in r4 is harmless here.
458
*/
459
add r10, r10, #16384
460
cmp r4, r10
461
bhs wont_overwrite
462
add r10, r4, r9
463
adr r9, wont_overwrite
464
cmp r10, r9
465
bls wont_overwrite
466
467
/*
468
* Relocate ourselves past the end of the decompressed kernel.
469
* r6 = _edata
470
* r10 = end of the decompressed kernel
471
* Because we always copy ahead, we need to do it from the end and go
472
* backward in case the source and destination overlap.
473
*/
474
/*
475
* Bump to the next 256-byte boundary with the size of
476
* the relocation code added. This avoids overwriting
477
* ourself when the offset is small.
478
*/
479
add r10, r10, #((reloc_code_end - restart + 256) & ~255)
480
bic r10, r10, #255
481
482
/* Get start of code we want to copy and align it down. */
483
adr r5, restart
484
bic r5, r5, #31
485
486
/* Relocate the hyp vector base if necessary */
487
#ifdef CONFIG_ARM_VIRT_EXT
488
mrs r0, spsr
489
and r0, r0, #MODE_MASK
490
cmp r0, #HYP_MODE
491
bne 1f
492
493
/*
494
* Compute the address of the hyp vectors after relocation.
495
* Call __hyp_set_vectors with the new address so that we
496
* can HVC again after the copy.
497
*/
498
adr_l r0, __hyp_stub_vectors
499
sub r0, r0, r5
500
add r0, r0, r10
501
bl __hyp_set_vectors
502
1:
503
#endif
504
505
sub r9, r6, r5 @ size to copy
506
add r9, r9, #31 @ rounded up to a multiple
507
bic r9, r9, #31 @ ... of 32 bytes
508
add r6, r9, r5
509
add r9, r9, r10
510
511
#ifdef DEBUG
512
sub r10, r6, r5
513
sub r10, r9, r10
514
/*
515
* We are about to copy the kernel to a new memory area.
516
* The boundaries of the new memory area can be found in
517
* r10 and r9, whilst r5 and r6 contain the boundaries
518
* of the memory we are going to copy.
519
* Calling dbgkc will help with the printing of this
520
* information.
521
*/
522
dbgkc r5, r6, r10, r9
523
#endif
524
525
1: ldmdb r6!, {r0 - r3, r10 - r12, lr}
526
cmp r6, r5
527
stmdb r9!, {r0 - r3, r10 - r12, lr}
528
bhi 1b
529
530
/* Preserve offset to relocated code. */
531
sub r6, r9, r6
532
533
mov r0, r9 @ start of relocated zImage
534
add r1, sp, r6 @ end of relocated zImage
535
bl cache_clean_flush
536
537
badr r0, restart
538
add r0, r0, r6
539
mov pc, r0
540
541
wont_overwrite:
542
adr r0, LC0
543
ldmia r0, {r1, r2, r3, r11, r12}
544
sub r0, r0, r1 @ calculate the delta offset
545
546
/*
547
* If delta is zero, we are running at the address we were linked at.
548
* r0 = delta
549
* r2 = BSS start
550
* r3 = BSS end
551
* r4 = kernel execution address (possibly with LSB set)
552
* r5 = appended dtb size (0 if not present)
553
* r7 = architecture ID
554
* r8 = atags pointer
555
* r11 = GOT start
556
* r12 = GOT end
557
* sp = stack pointer
558
*/
559
orrs r1, r0, r5
560
beq not_relocated
561
562
add r11, r11, r0
563
add r12, r12, r0
564
565
#ifndef CONFIG_ZBOOT_ROM
566
/*
567
* If we're running fully PIC === CONFIG_ZBOOT_ROM = n,
568
* we need to fix up pointers into the BSS region.
569
* Note that the stack pointer has already been fixed up.
570
*/
571
add r2, r2, r0
572
add r3, r3, r0
573
574
/*
575
* Relocate all entries in the GOT table.
576
* Bump bss entries to _edata + dtb size
577
*/
578
1: ldr r1, [r11, #0] @ relocate entries in the GOT
579
add r1, r1, r0 @ This fixes up C references
580
cmp r1, r2 @ if entry >= bss_start &&
581
cmphs r3, r1 @ bss_end > entry
582
addhi r1, r1, r5 @ entry += dtb size
583
str r1, [r11], #4 @ next entry
584
cmp r11, r12
585
blo 1b
586
587
/* bump our bss pointers too */
588
add r2, r2, r5
589
add r3, r3, r5
590
591
#else
592
593
/*
594
* Relocate entries in the GOT table. We only relocate
595
* the entries that are outside the (relocated) BSS region.
596
*/
597
1: ldr r1, [r11, #0] @ relocate entries in the GOT
598
cmp r1, r2 @ entry < bss_start ||
599
cmphs r3, r1 @ _end < entry
600
addlo r1, r1, r0 @ table. This fixes up the
601
str r1, [r11], #4 @ C references.
602
cmp r11, r12
603
blo 1b
604
#endif
605
606
not_relocated: mov r0, #0
607
1: str r0, [r2], #4 @ clear bss
608
str r0, [r2], #4
609
str r0, [r2], #4
610
str r0, [r2], #4
611
cmp r2, r3
612
blo 1b
613
614
/*
615
* Did we skip the cache setup earlier?
616
* That is indicated by the LSB in r4.
617
* Do it now if so.
618
*/
619
tst r4, #1
620
bic r4, r4, #1
621
blne cache_on
622
623
/*
624
* The C runtime environment should now be setup sufficiently.
625
* Set up some pointers, and start decompressing.
626
* r4 = kernel execution address
627
* r7 = architecture ID
628
* r8 = atags pointer
629
*/
630
mov r0, r4
631
mov r1, sp @ malloc space above stack
632
add r2, sp, #MALLOC_SIZE @ 64k max
633
mov r3, r7
634
bl decompress_kernel
635
636
get_inflated_image_size r1, r2, r3
637
638
mov r0, r4 @ start of inflated image
639
add r1, r1, r0 @ end of inflated image
640
bl cache_clean_flush
641
bl cache_off
642
643
#ifdef CONFIG_ARM_VIRT_EXT
644
mrs r0, spsr @ Get saved CPU boot mode
645
and r0, r0, #MODE_MASK
646
cmp r0, #HYP_MODE @ if not booted in HYP mode...
647
bne __enter_kernel @ boot kernel directly
648
649
adr_l r0, __hyp_reentry_vectors
650
bl __hyp_set_vectors
651
__HVC(0) @ otherwise bounce to hyp mode
652
653
b . @ should never be reached
654
#else
655
b __enter_kernel
656
#endif
657
658
.align 2
659
.type LC0, #object
660
LC0: .word LC0 @ r1
661
.word __bss_start @ r2
662
.word _end @ r3
663
.word _got_start @ r11
664
.word _got_end @ ip
665
.size LC0, . - LC0
666
667
.type LC1, #object
668
LC1: .word .L_user_stack_end - LC1 @ sp
669
.word _edata - LC1 @ r6
670
.size LC1, . - LC1
671
672
.Lheadroom:
673
.word _end - restart + 16384 + 1024*1024
674
675
.Linflated_image_size_offset:
676
.long (input_data_end - 4) - .
677
678
#ifdef CONFIG_ARCH_RPC
679
.globl params
680
params: ldr r0, =0x10000100 @ params_phys for RPC
681
mov pc, lr
682
.ltorg
683
.align
684
#endif
685
686
/*
687
* dcache_line_size - get the minimum D-cache line size from the CTR register
688
* on ARMv7.
689
*/
690
.macro dcache_line_size, reg, tmp
691
#ifdef CONFIG_CPU_V7M
692
movw \tmp, #:lower16:BASEADDR_V7M_SCB + V7M_SCB_CTR
693
movt \tmp, #:upper16:BASEADDR_V7M_SCB + V7M_SCB_CTR
694
ldr \tmp, [\tmp]
695
#else
696
mrc p15, 0, \tmp, c0, c0, 1 @ read ctr
697
#endif
698
lsr \tmp, \tmp, #16
699
and \tmp, \tmp, #0xf @ cache line size encoding
700
mov \reg, #4 @ bytes per word
701
mov \reg, \reg, lsl \tmp @ actual cache line size
702
.endm
703
704
/*
705
* Turn on the cache. We need to setup some page tables so that we
706
* can have both the I and D caches on.
707
*
708
* We place the page tables 16k down from the kernel execution address,
709
* and we hope that nothing else is using it. If we're using it, we
710
* will go pop!
711
*
712
* On entry,
713
* r4 = kernel execution address
714
* r7 = architecture number
715
* r8 = atags pointer
716
* On exit,
717
* r0, r1, r2, r3, r9, r10, r12 corrupted
718
* This routine must preserve:
719
* r4, r7, r8
720
*/
721
.align 5
722
cache_on: mov r3, #8 @ cache_on function
723
b call_cache_fn
724
725
/*
726
* Initialize the highest priority protection region, PR7
727
* to cover all 32bit address and cacheable and bufferable.
728
*/
729
__armv4_mpu_cache_on:
730
mov r0, #0x3f @ 4G, the whole
731
mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting
732
mcr p15, 0, r0, c6, c7, 1
733
734
mov r0, #0x80 @ PR7
735
mcr p15, 0, r0, c2, c0, 0 @ D-cache on
736
mcr p15, 0, r0, c2, c0, 1 @ I-cache on
737
mcr p15, 0, r0, c3, c0, 0 @ write-buffer on
738
739
mov r0, #0xc000
740
mcr p15, 0, r0, c5, c0, 1 @ I-access permission
741
mcr p15, 0, r0, c5, c0, 0 @ D-access permission
742
743
mov r0, #0
744
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
745
mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache
746
mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache
747
mrc p15, 0, r0, c1, c0, 0 @ read control reg
748
@ ...I .... ..D. WC.M
749
orr r0, r0, #0x002d @ .... .... ..1. 11.1
750
orr r0, r0, #0x1000 @ ...1 .... .... ....
751
752
mcr p15, 0, r0, c1, c0, 0 @ write control reg
753
754
mov r0, #0
755
mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache
756
mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache
757
mov pc, lr
758
759
__armv3_mpu_cache_on:
760
mov r0, #0x3f @ 4G, the whole
761
mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting
762
763
mov r0, #0x80 @ PR7
764
mcr p15, 0, r0, c2, c0, 0 @ cache on
765
mcr p15, 0, r0, c3, c0, 0 @ write-buffer on
766
767
mov r0, #0xc000
768
mcr p15, 0, r0, c5, c0, 0 @ access permission
769
770
mov r0, #0
771
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
772
/*
773
* ?? ARMv3 MMU does not allow reading the control register,
774
* does this really work on ARMv3 MPU?
775
*/
776
mrc p15, 0, r0, c1, c0, 0 @ read control reg
777
@ .... .... .... WC.M
778
orr r0, r0, #0x000d @ .... .... .... 11.1
779
/* ?? this overwrites the value constructed above? */
780
mov r0, #0
781
mcr p15, 0, r0, c1, c0, 0 @ write control reg
782
783
/* ?? invalidate for the second time? */
784
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
785
mov pc, lr
786
787
#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
788
#define CB_BITS 0x08
789
#else
790
#define CB_BITS 0x0c
791
#endif
792
793
__setup_mmu: sub r3, r4, #16384 @ Page directory size
794
bic r3, r3, #0xff @ Align the pointer
795
bic r3, r3, #0x3f00
796
/*
797
* Initialise the page tables, turning on the cacheable and bufferable
798
* bits for the RAM area only.
799
*/
800
mov r0, r3
801
mov r9, r0, lsr #18
802
mov r9, r9, lsl #18 @ start of RAM
803
add r10, r9, #0x10000000 @ a reasonable RAM size
804
mov r1, #0x12 @ XN|U + section mapping
805
orr r1, r1, #3 << 10 @ AP=11
806
add r2, r3, #16384
807
1: cmp r1, r9 @ if virt > start of RAM
808
cmphs r10, r1 @ && end of RAM > virt
809
bic r1, r1, #0x1c @ clear XN|U + C + B
810
orrlo r1, r1, #0x10 @ Set XN|U for non-RAM
811
orrhs r1, r1, r6 @ set RAM section settings
812
str r1, [r0], #4 @ 1:1 mapping
813
add r1, r1, #1048576
814
teq r0, r2
815
bne 1b
816
/*
817
* If ever we are running from Flash, then we surely want the cache
818
* to be enabled also for our execution instance... We map 2MB of it
819
* so there is no map overlap problem for up to 1 MB compressed kernel.
820
* If the execution is in RAM then we would only be duplicating the above.
821
*/
822
orr r1, r6, #0x04 @ ensure B is set for this
823
orr r1, r1, #3 << 10
824
mov r2, pc
825
mov r2, r2, lsr #20
826
orr r1, r1, r2, lsl #20
827
add r0, r3, r2, lsl #2
828
str r1, [r0], #4
829
add r1, r1, #1048576
830
str r1, [r0]
831
mov pc, lr
832
ENDPROC(__setup_mmu)
833
834
@ Enable unaligned access on v6, to allow better code generation
835
@ for the decompressor C code:
836
__armv6_mmu_cache_on:
837
mrc p15, 0, r0, c1, c0, 0 @ read SCTLR
838
bic r0, r0, #2 @ A (no unaligned access fault)
839
orr r0, r0, #1 << 22 @ U (v6 unaligned access model)
840
mcr p15, 0, r0, c1, c0, 0 @ write SCTLR
841
b __armv4_mmu_cache_on
842
843
__arm926ejs_mmu_cache_on:
844
#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
845
mov r0, #4 @ put dcache in WT mode
846
mcr p15, 7, r0, c15, c0, 0
847
#endif
848
849
__armv4_mmu_cache_on:
850
mov r12, lr
851
#ifdef CONFIG_MMU
852
mov r6, #CB_BITS | 0x12 @ U
853
bl __setup_mmu
854
mov r0, #0
855
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
856
mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs
857
mrc p15, 0, r0, c1, c0, 0 @ read control reg
858
orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement
859
orr r0, r0, #0x0030
860
ARM_BE8( orr r0, r0, #1 << 25 ) @ big-endian page tables
861
bl __common_mmu_cache_on
862
mov r0, #0
863
mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs
864
#endif
865
mov pc, r12
866
867
__armv7_mmu_cache_on:
868
enable_cp15_barriers r11
869
mov r12, lr
870
#ifdef CONFIG_MMU
871
mrc p15, 0, r11, c0, c1, 4 @ read ID_MMFR0
872
tst r11, #0xf @ VMSA
873
movne r6, #CB_BITS | 0x02 @ !XN
874
blne __setup_mmu
875
mov r0, #0
876
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
877
tst r11, #0xf @ VMSA
878
mcrne p15, 0, r0, c8, c7, 0 @ flush I,D TLBs
879
#endif
880
mrc p15, 0, r0, c1, c0, 0 @ read control reg
881
bic r0, r0, #1 << 28 @ clear SCTLR.TRE
882
orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement
883
orr r0, r0, #0x003c @ write buffer
884
bic r0, r0, #2 @ A (no unaligned access fault)
885
orr r0, r0, #1 << 22 @ U (v6 unaligned access model)
886
@ (needed for ARM1176)
887
#ifdef CONFIG_MMU
888
ARM_BE8( orr r0, r0, #1 << 25 ) @ big-endian page tables
889
mrcne p15, 0, r6, c2, c0, 2 @ read ttb control reg
890
orrne r0, r0, #1 @ MMU enabled
891
movne r1, #0xfffffffd @ domain 0 = client
892
bic r6, r6, #1 << 31 @ 32-bit translation system
893
bic r6, r6, #(7 << 0) | (1 << 4) @ use only ttbr0
894
mcrne p15, 0, r3, c2, c0, 0 @ load page table pointer
895
mcrne p15, 0, r1, c3, c0, 0 @ load domain access control
896
mcrne p15, 0, r6, c2, c0, 2 @ load ttb control
897
#endif
898
mcr p15, 0, r0, c7, c5, 4 @ ISB
899
mcr p15, 0, r0, c1, c0, 0 @ load control register
900
mrc p15, 0, r0, c1, c0, 0 @ and read it back
901
mov r0, #0
902
mcr p15, 0, r0, c7, c5, 4 @ ISB
903
mov pc, r12
904
905
__fa526_cache_on:
906
mov r12, lr
907
mov r6, #CB_BITS | 0x12 @ U
908
bl __setup_mmu
909
mov r0, #0
910
mcr p15, 0, r0, c7, c7, 0 @ Invalidate whole cache
911
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
912
mcr p15, 0, r0, c8, c7, 0 @ flush UTLB
913
mrc p15, 0, r0, c1, c0, 0 @ read control reg
914
orr r0, r0, #0x1000 @ I-cache enable
915
bl __common_mmu_cache_on
916
mov r0, #0
917
mcr p15, 0, r0, c8, c7, 0 @ flush UTLB
918
mov pc, r12
919
920
__common_mmu_cache_on:
921
#ifndef CONFIG_THUMB2_KERNEL
922
#ifndef DEBUG
923
orr r0, r0, #0x000d @ Write buffer, mmu
924
#endif
925
mov r1, #-1
926
mcr p15, 0, r3, c2, c0, 0 @ load page table pointer
927
mcr p15, 0, r1, c3, c0, 0 @ load domain access control
928
b 1f
929
.align 5 @ cache line aligned
930
1: mcr p15, 0, r0, c1, c0, 0 @ load control register
931
mrc p15, 0, r0, c1, c0, 0 @ and read it back to
932
sub pc, lr, r0, lsr #32 @ properly flush pipeline
933
#endif
934
935
#define PROC_ENTRY_SIZE (4*5)
936
937
/*
938
* Here follow the relocatable cache support functions for the
939
* various processors. This is a generic hook for locating an
940
* entry and jumping to an instruction at the specified offset
941
* from the start of the block. Please note this is all position
942
* independent code.
943
*
944
* r1 = corrupted
945
* r2 = corrupted
946
* r3 = block offset
947
* r9 = corrupted
948
* r12 = corrupted
949
*/
950
951
call_cache_fn: adr r12, proc_types
952
#ifdef CONFIG_CPU_CP15
953
mrc p15, 0, r9, c0, c0 @ get processor ID
954
#elif defined(CONFIG_CPU_V7M)
955
/*
956
* On v7-M the processor id is located in the V7M_SCB_CPUID
957
* register, but as cache handling is IMPLEMENTATION DEFINED on
958
* v7-M (if existant at all) we just return early here.
959
* If V7M_SCB_CPUID were used the cpu ID functions (i.e.
960
* __armv7_mmu_cache_{on,off,flush}) would be selected which
961
* use cp15 registers that are not implemented on v7-M.
962
*/
963
bx lr
964
#else
965
ldr r9, =CONFIG_PROCESSOR_ID
966
#endif
967
1: ldr r1, [r12, #0] @ get value
968
ldr r2, [r12, #4] @ get mask
969
eor r1, r1, r9 @ (real ^ match)
970
tst r1, r2 @ & mask
971
ARM( addeq pc, r12, r3 ) @ call cache function
972
THUMB( addeq r12, r3 )
973
THUMB( moveq pc, r12 ) @ call cache function
974
add r12, r12, #PROC_ENTRY_SIZE
975
b 1b
976
977
/*
978
* Table for cache operations. This is basically:
979
* - CPU ID match
980
* - CPU ID mask
981
* - 'cache on' method instruction
982
* - 'cache off' method instruction
983
* - 'cache flush' method instruction
984
*
985
* We match an entry using: ((real_id ^ match) & mask) == 0
986
*
987
* Writethrough caches generally only need 'on' and 'off'
988
* methods. Writeback caches _must_ have the flush method
989
* defined.
990
*/
991
.align 2
992
.type proc_types,#object
993
proc_types:
994
.word 0x41000000 @ old ARM ID
995
.word 0xff00f000
996
mov pc, lr
997
THUMB( nop )
998
mov pc, lr
999
THUMB( nop )
1000
mov pc, lr
1001
THUMB( nop )
1002
1003
.word 0x41007000 @ ARM7/710
1004
.word 0xfff8fe00
1005
mov pc, lr
1006
THUMB( nop )
1007
mov pc, lr
1008
THUMB( nop )
1009
mov pc, lr
1010
THUMB( nop )
1011
1012
.word 0x41807200 @ ARM720T (writethrough)
1013
.word 0xffffff00
1014
W(b) __armv4_mmu_cache_on
1015
W(b) __armv4_mmu_cache_off
1016
mov pc, lr
1017
THUMB( nop )
1018
1019
.word 0x41007400 @ ARM74x
1020
.word 0xff00ff00
1021
W(b) __armv3_mpu_cache_on
1022
W(b) __armv3_mpu_cache_off
1023
W(b) __armv3_mpu_cache_flush
1024
1025
.word 0x41009400 @ ARM94x
1026
.word 0xff00ff00
1027
W(b) __armv4_mpu_cache_on
1028
W(b) __armv4_mpu_cache_off
1029
W(b) __armv4_mpu_cache_flush
1030
1031
.word 0x41069260 @ ARM926EJ-S (v5TEJ)
1032
.word 0xff0ffff0
1033
W(b) __arm926ejs_mmu_cache_on
1034
W(b) __armv4_mmu_cache_off
1035
W(b) __armv5tej_mmu_cache_flush
1036
1037
.word 0x00007000 @ ARM7 IDs
1038
.word 0x0000f000
1039
mov pc, lr
1040
THUMB( nop )
1041
mov pc, lr
1042
THUMB( nop )
1043
mov pc, lr
1044
THUMB( nop )
1045
1046
@ Everything from here on will be the new ID system.
1047
1048
.word 0x4401a100 @ sa110 / sa1100
1049
.word 0xffffffe0
1050
W(b) __armv4_mmu_cache_on
1051
W(b) __armv4_mmu_cache_off
1052
W(b) __armv4_mmu_cache_flush
1053
1054
.word 0x6901b110 @ sa1110
1055
.word 0xfffffff0
1056
W(b) __armv4_mmu_cache_on
1057
W(b) __armv4_mmu_cache_off
1058
W(b) __armv4_mmu_cache_flush
1059
1060
.word 0x56056900
1061
.word 0xffffff00 @ PXA9xx
1062
W(b) __armv4_mmu_cache_on
1063
W(b) __armv4_mmu_cache_off
1064
W(b) __armv4_mmu_cache_flush
1065
1066
.word 0x56158000 @ PXA168
1067
.word 0xfffff000
1068
W(b) __armv4_mmu_cache_on
1069
W(b) __armv4_mmu_cache_off
1070
W(b) __armv5tej_mmu_cache_flush
1071
1072
.word 0x56050000 @ Feroceon
1073
.word 0xff0f0000
1074
W(b) __armv4_mmu_cache_on
1075
W(b) __armv4_mmu_cache_off
1076
W(b) __armv5tej_mmu_cache_flush
1077
1078
#ifdef CONFIG_CPU_FEROCEON_OLD_ID
1079
/* this conflicts with the standard ARMv5TE entry */
1080
.long 0x41009260 @ Old Feroceon
1081
.long 0xff00fff0
1082
b __armv4_mmu_cache_on
1083
b __armv4_mmu_cache_off
1084
b __armv5tej_mmu_cache_flush
1085
#endif
1086
1087
.word 0x66015261 @ FA526
1088
.word 0xff01fff1
1089
W(b) __fa526_cache_on
1090
W(b) __armv4_mmu_cache_off
1091
W(b) __fa526_cache_flush
1092
1093
@ These match on the architecture ID
1094
1095
.word 0x00020000 @ ARMv4T
1096
.word 0x000f0000
1097
W(b) __armv4_mmu_cache_on
1098
W(b) __armv4_mmu_cache_off
1099
W(b) __armv4_mmu_cache_flush
1100
1101
.word 0x00050000 @ ARMv5TE
1102
.word 0x000f0000
1103
W(b) __armv4_mmu_cache_on
1104
W(b) __armv4_mmu_cache_off
1105
W(b) __armv4_mmu_cache_flush
1106
1107
.word 0x00060000 @ ARMv5TEJ
1108
.word 0x000f0000
1109
W(b) __armv4_mmu_cache_on
1110
W(b) __armv4_mmu_cache_off
1111
W(b) __armv5tej_mmu_cache_flush
1112
1113
.word 0x0007b000 @ ARMv6
1114
.word 0x000ff000
1115
W(b) __armv6_mmu_cache_on
1116
W(b) __armv4_mmu_cache_off
1117
W(b) __armv6_mmu_cache_flush
1118
1119
.word 0x000f0000 @ new CPU Id
1120
.word 0x000f0000
1121
W(b) __armv7_mmu_cache_on
1122
W(b) __armv7_mmu_cache_off
1123
W(b) __armv7_mmu_cache_flush
1124
1125
.word 0 @ unrecognised type
1126
.word 0
1127
mov pc, lr
1128
THUMB( nop )
1129
mov pc, lr
1130
THUMB( nop )
1131
mov pc, lr
1132
THUMB( nop )
1133
1134
.size proc_types, . - proc_types
1135
1136
/*
1137
* If you get a "non-constant expression in ".if" statement"
1138
* error from the assembler on this line, check that you have
1139
* not accidentally written a "b" instruction where you should
1140
* have written W(b).
1141
*/
1142
.if (. - proc_types) % PROC_ENTRY_SIZE != 0
1143
.error "The size of one or more proc_types entries is wrong."
1144
.endif
1145
1146
/*
1147
* Turn off the Cache and MMU. ARMv3 does not support
1148
* reading the control register, but ARMv4 does.
1149
*
1150
* On exit,
1151
* r0, r1, r2, r3, r9, r12 corrupted
1152
* This routine must preserve:
1153
* r4, r7, r8
1154
*/
1155
.align 5
1156
cache_off: mov r3, #12 @ cache_off function
1157
b call_cache_fn
1158
1159
__armv4_mpu_cache_off:
1160
mrc p15, 0, r0, c1, c0
1161
bic r0, r0, #0x000d
1162
mcr p15, 0, r0, c1, c0 @ turn MPU and cache off
1163
mov r0, #0
1164
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
1165
mcr p15, 0, r0, c7, c6, 0 @ flush D-Cache
1166
mcr p15, 0, r0, c7, c5, 0 @ flush I-Cache
1167
mov pc, lr
1168
1169
__armv3_mpu_cache_off:
1170
mrc p15, 0, r0, c1, c0
1171
bic r0, r0, #0x000d
1172
mcr p15, 0, r0, c1, c0, 0 @ turn MPU and cache off
1173
mov r0, #0
1174
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
1175
mov pc, lr
1176
1177
__armv4_mmu_cache_off:
1178
#ifdef CONFIG_MMU
1179
mrc p15, 0, r0, c1, c0
1180
bic r0, r0, #0x000d
1181
mcr p15, 0, r0, c1, c0 @ turn MMU and cache off
1182
mov r0, #0
1183
mcr p15, 0, r0, c7, c7 @ invalidate whole cache v4
1184
mcr p15, 0, r0, c8, c7 @ invalidate whole TLB v4
1185
#endif
1186
mov pc, lr
1187
1188
__armv7_mmu_cache_off:
1189
mrc p15, 0, r0, c1, c0
1190
#ifdef CONFIG_MMU
1191
bic r0, r0, #0x0005
1192
#else
1193
bic r0, r0, #0x0004
1194
#endif
1195
mcr p15, 0, r0, c1, c0 @ turn MMU and cache off
1196
mov r0, #0
1197
#ifdef CONFIG_MMU
1198
mcr p15, 0, r0, c8, c7, 0 @ invalidate whole TLB
1199
#endif
1200
mcr p15, 0, r0, c7, c5, 6 @ invalidate BTC
1201
mcr p15, 0, r0, c7, c10, 4 @ DSB
1202
mcr p15, 0, r0, c7, c5, 4 @ ISB
1203
mov pc, lr
1204
1205
/*
1206
* Clean and flush the cache to maintain consistency.
1207
*
1208
* On entry,
1209
* r0 = start address
1210
* r1 = end address (exclusive)
1211
* On exit,
1212
* r1, r2, r3, r9, r10, r11, r12 corrupted
1213
* This routine must preserve:
1214
* r4, r6, r7, r8
1215
*/
1216
.align 5
1217
cache_clean_flush:
1218
mov r3, #16
1219
mov r11, r1
1220
b call_cache_fn
1221
1222
__armv4_mpu_cache_flush:
1223
tst r4, #1
1224
movne pc, lr
1225
mov r2, #1
1226
mov r3, #0
1227
mcr p15, 0, ip, c7, c6, 0 @ invalidate D cache
1228
mov r1, #7 << 5 @ 8 segments
1229
1: orr r3, r1, #63 << 26 @ 64 entries
1230
2: mcr p15, 0, r3, c7, c14, 2 @ clean & invalidate D index
1231
subs r3, r3, #1 << 26
1232
bcs 2b @ entries 63 to 0
1233
subs r1, r1, #1 << 5
1234
bcs 1b @ segments 7 to 0
1235
1236
teq r2, #0
1237
mcrne p15, 0, ip, c7, c5, 0 @ invalidate I cache
1238
mcr p15, 0, ip, c7, c10, 4 @ drain WB
1239
mov pc, lr
1240
1241
__fa526_cache_flush:
1242
tst r4, #1
1243
movne pc, lr
1244
mov r1, #0
1245
mcr p15, 0, r1, c7, c14, 0 @ clean and invalidate D cache
1246
mcr p15, 0, r1, c7, c5, 0 @ flush I cache
1247
mcr p15, 0, r1, c7, c10, 4 @ drain WB
1248
mov pc, lr
1249
1250
__armv6_mmu_cache_flush:
1251
mov r1, #0
1252
tst r4, #1
1253
mcreq p15, 0, r1, c7, c14, 0 @ clean+invalidate D
1254
mcr p15, 0, r1, c7, c5, 0 @ invalidate I+BTB
1255
mcreq p15, 0, r1, c7, c15, 0 @ clean+invalidate unified
1256
mcr p15, 0, r1, c7, c10, 4 @ drain WB
1257
mov pc, lr
1258
1259
__armv7_mmu_cache_flush:
1260
enable_cp15_barriers r10
1261
tst r4, #1
1262
bne iflush
1263
mrc p15, 0, r10, c0, c1, 5 @ read ID_MMFR1
1264
tst r10, #0xf << 16 @ hierarchical cache (ARMv7)
1265
mov r10, #0
1266
beq hierarchical
1267
mcr p15, 0, r10, c7, c14, 0 @ clean+invalidate D
1268
b iflush
1269
hierarchical:
1270
dcache_line_size r1, r2 @ r1 := dcache min line size
1271
sub r2, r1, #1 @ r2 := line size mask
1272
bic r0, r0, r2 @ round down start to line size
1273
sub r11, r11, #1 @ end address is exclusive
1274
bic r11, r11, r2 @ round down end to line size
1275
0: cmp r0, r11 @ finished?
1276
bgt iflush
1277
mcr p15, 0, r0, c7, c14, 1 @ Dcache clean/invalidate by VA
1278
add r0, r0, r1
1279
b 0b
1280
iflush:
1281
mcr p15, 0, r10, c7, c10, 4 @ DSB
1282
mcr p15, 0, r10, c7, c5, 0 @ invalidate I+BTB
1283
mcr p15, 0, r10, c7, c10, 4 @ DSB
1284
mcr p15, 0, r10, c7, c5, 4 @ ISB
1285
mov pc, lr
1286
1287
__armv5tej_mmu_cache_flush:
1288
tst r4, #1
1289
movne pc, lr
1290
1: mrc p15, 0, APSR_nzcv, c7, c14, 3 @ test,clean,invalidate D cache
1291
bne 1b
1292
mcr p15, 0, r0, c7, c5, 0 @ flush I cache
1293
mcr p15, 0, r0, c7, c10, 4 @ drain WB
1294
mov pc, lr
1295
1296
__armv4_mmu_cache_flush:
1297
tst r4, #1
1298
movne pc, lr
1299
mov r2, #64*1024 @ default: 32K dcache size (*2)
1300
mov r11, #32 @ default: 32 byte line size
1301
mrc p15, 0, r3, c0, c0, 1 @ read cache type
1302
teq r3, r9 @ cache ID register present?
1303
beq no_cache_id
1304
mov r1, r3, lsr #18
1305
and r1, r1, #7
1306
mov r2, #1024
1307
mov r2, r2, lsl r1 @ base dcache size *2
1308
tst r3, #1 << 14 @ test M bit
1309
addne r2, r2, r2, lsr #1 @ +1/2 size if M == 1
1310
mov r3, r3, lsr #12
1311
and r3, r3, #3
1312
mov r11, #8
1313
mov r11, r11, lsl r3 @ cache line size in bytes
1314
no_cache_id:
1315
mov r1, pc
1316
bic r1, r1, #63 @ align to longest cache line
1317
add r2, r1, r2
1318
1:
1319
ARM( ldr r3, [r1], r11 ) @ s/w flush D cache
1320
THUMB( ldr r3, [r1] ) @ s/w flush D cache
1321
THUMB( add r1, r1, r11 )
1322
teq r1, r2
1323
bne 1b
1324
1325
mcr p15, 0, r1, c7, c5, 0 @ flush I cache
1326
mcr p15, 0, r1, c7, c6, 0 @ flush D cache
1327
mcr p15, 0, r1, c7, c10, 4 @ drain WB
1328
mov pc, lr
1329
1330
__armv3_mmu_cache_flush:
1331
__armv3_mpu_cache_flush:
1332
tst r4, #1
1333
movne pc, lr
1334
mov r1, #0
1335
mcr p15, 0, r1, c7, c0, 0 @ invalidate whole cache v3
1336
mov pc, lr
1337
1338
/*
1339
* Various debugging routines for printing hex characters and
1340
* memory, which again must be relocatable.
1341
*/
1342
#ifdef DEBUG
1343
.align 2
1344
.type phexbuf,#object
1345
phexbuf: .space 12
1346
.size phexbuf, . - phexbuf
1347
1348
@ phex corrupts {r0, r1, r2, r3}
1349
phex: adr r3, phexbuf
1350
mov r2, #0
1351
strb r2, [r3, r1]
1352
1: subs r1, r1, #1
1353
movmi r0, r3
1354
bmi puts
1355
and r2, r0, #15
1356
mov r0, r0, lsr #4
1357
cmp r2, #10
1358
addge r2, r2, #7
1359
add r2, r2, #'0'
1360
strb r2, [r3, r1]
1361
b 1b
1362
1363
@ puts corrupts {r0, r1, r2, r3}
1364
puts: loadsp r3, r2, r1
1365
1: ldrb r2, [r0], #1
1366
teq r2, #0
1367
moveq pc, lr
1368
2: writeb r2, r3, r1
1369
mov r1, #0x00020000
1370
3: subs r1, r1, #1
1371
bne 3b
1372
teq r2, #'\n'
1373
moveq r2, #'\r'
1374
beq 2b
1375
teq r0, #0
1376
bne 1b
1377
mov pc, lr
1378
@ putc corrupts {r0, r1, r2, r3}
1379
putc:
1380
mov r2, r0
1381
loadsp r3, r1, r0
1382
mov r0, #0
1383
b 2b
1384
1385
@ memdump corrupts {r0, r1, r2, r3, r10, r11, r12, lr}
1386
memdump: mov r12, r0
1387
mov r10, lr
1388
mov r11, #0
1389
2: mov r0, r11, lsl #2
1390
add r0, r0, r12
1391
mov r1, #8
1392
bl phex
1393
mov r0, #':'
1394
bl putc
1395
1: mov r0, #' '
1396
bl putc
1397
ldr r0, [r12, r11, lsl #2]
1398
mov r1, #8
1399
bl phex
1400
and r0, r11, #7
1401
teq r0, #3
1402
moveq r0, #' '
1403
bleq putc
1404
and r0, r11, #7
1405
add r11, r11, #1
1406
teq r0, #7
1407
bne 1b
1408
mov r0, #'\n'
1409
bl putc
1410
cmp r11, #64
1411
blt 2b
1412
mov pc, r10
1413
#endif
1414
1415
.ltorg
1416
1417
#ifdef CONFIG_ARM_VIRT_EXT
1418
.align 5
1419
__hyp_reentry_vectors:
1420
W(b) . @ reset
1421
W(b) . @ undef
1422
#ifdef CONFIG_EFI_STUB
1423
W(b) __enter_kernel_from_hyp @ hvc from HYP
1424
#else
1425
W(b) . @ svc
1426
#endif
1427
W(b) . @ pabort
1428
W(b) . @ dabort
1429
W(b) __enter_kernel @ hyp
1430
W(b) . @ irq
1431
W(b) . @ fiq
1432
#endif /* CONFIG_ARM_VIRT_EXT */
1433
1434
__enter_kernel:
1435
mov r0, #0 @ must be 0
1436
mov r1, r7 @ restore architecture number
1437
mov r2, r8 @ restore atags pointer
1438
ARM( mov pc, r4 ) @ call kernel
1439
M_CLASS( add r4, r4, #1 ) @ enter in Thumb mode for M class
1440
THUMB( bx r4 ) @ entry point is always ARM for A/R classes
1441
1442
reloc_code_end:
1443
1444
#ifdef CONFIG_EFI_STUB
1445
__enter_kernel_from_hyp:
1446
mrc p15, 4, r0, c1, c0, 0 @ read HSCTLR
1447
bic r0, r0, #0x5 @ disable MMU and caches
1448
mcr p15, 4, r0, c1, c0, 0 @ write HSCTLR
1449
isb
1450
b __enter_kernel
1451
1452
ENTRY(efi_enter_kernel)
1453
mov r4, r0 @ preserve image base
1454
mov r8, r1 @ preserve DT pointer
1455
1456
adr_l r0, call_cache_fn
1457
adr r1, 0f @ clean the region of code we
1458
bl cache_clean_flush @ may run with the MMU off
1459
1460
#ifdef CONFIG_ARM_VIRT_EXT
1461
@
1462
@ The EFI spec does not support booting on ARM in HYP mode,
1463
@ since it mandates that the MMU and caches are on, with all
1464
@ 32-bit addressable DRAM mapped 1:1 using short descriptors.
1465
@
1466
@ While the EDK2 reference implementation adheres to this,
1467
@ U-Boot might decide to enter the EFI stub in HYP mode
1468
@ anyway, with the MMU and caches either on or off.
1469
@
1470
mrs r0, cpsr @ get the current mode
1471
msr spsr_cxsf, r0 @ record boot mode
1472
and r0, r0, #MODE_MASK @ are we running in HYP mode?
1473
cmp r0, #HYP_MODE
1474
bne .Lefi_svc
1475
1476
mrc p15, 4, r1, c1, c0, 0 @ read HSCTLR
1477
tst r1, #0x1 @ MMU enabled at HYP?
1478
beq 1f
1479
1480
@
1481
@ When running in HYP mode with the caches on, we're better
1482
@ off just carrying on using the cached 1:1 mapping that the
1483
@ firmware provided. Set up the HYP vectors so HVC instructions
1484
@ issued from HYP mode take us to the correct handler code. We
1485
@ will disable the MMU before jumping to the kernel proper.
1486
@
1487
ARM( bic r1, r1, #(1 << 30) ) @ clear HSCTLR.TE
1488
THUMB( orr r1, r1, #(1 << 30) ) @ set HSCTLR.TE
1489
mcr p15, 4, r1, c1, c0, 0
1490
adr r0, __hyp_reentry_vectors
1491
mcr p15, 4, r0, c12, c0, 0 @ set HYP vector base (HVBAR)
1492
isb
1493
b .Lefi_hyp
1494
1495
@
1496
@ When running in HYP mode with the caches off, we need to drop
1497
@ into SVC mode now, and let the decompressor set up its cached
1498
@ 1:1 mapping as usual.
1499
@
1500
1: mov r9, r4 @ preserve image base
1501
bl __hyp_stub_install @ install HYP stub vectors
1502
safe_svcmode_maskall r1 @ drop to SVC mode
1503
msr spsr_cxsf, r0 @ record boot mode
1504
orr r4, r9, #1 @ restore image base and set LSB
1505
b .Lefi_hyp
1506
.Lefi_svc:
1507
#endif
1508
mrc p15, 0, r0, c1, c0, 0 @ read SCTLR
1509
tst r0, #0x1 @ MMU enabled?
1510
orreq r4, r4, #1 @ set LSB if not
1511
1512
.Lefi_hyp:
1513
mov r0, r8 @ DT start
1514
add r1, r8, r2 @ DT end
1515
bl cache_clean_flush
1516
1517
adr r0, 0f @ switch to our stack
1518
ldr sp, [r0]
1519
add sp, sp, r0
1520
1521
mov r5, #0 @ appended DTB size
1522
mov r7, #0xFFFFFFFF @ machine ID
1523
b wont_overwrite
1524
ENDPROC(efi_enter_kernel)
1525
0: .long .L_user_stack_end - .
1526
#endif
1527
1528
.align
1529
.section ".stack", "aw", %nobits
1530
.L_user_stack: .space 4096
1531
.L_user_stack_end:
1532
1533